Artykuły w czasopismach na temat „Anticancer efficacy”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Anticancer efficacy”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Kisiel-Nawrot, Ewa, Malgorzata Latocha, Andrzej Bak, Violetta Kozik, Josef Jampilek, and Andrzej Zieba. "Anticancer Efficacy of Antibacterial Quinobenzothiazines." Applied Sciences 13, no. 5 (2023): 2886. http://dx.doi.org/10.3390/app13052886.
Pełny tekst źródłaFarashi-Bonab, Samad, and Nemat Khansari. "Salmonella-based Anticancer Vaccines and their Efficacy." Vaccination Research – Open Journal 4, no. 1 (2019): 5–11. http://dx.doi.org/10.17140/vroj-4-111.
Pełny tekst źródłaNiedzwiecki, Aleksandra, Mohd Roomi, Tatiana Kalinovsky, and Matthias Rath. "Anticancer Efficacy of Polyphenols and Their Combinations." Nutrients 8, no. 9 (2016): 552. http://dx.doi.org/10.3390/nu8090552.
Pełny tekst źródłaSun, Shi-Yong. "Enhancing perifosine's anticancer efficacy by preventing autophagy." Autophagy 6, no. 1 (2010): 184–85. http://dx.doi.org/10.4161/auto.6.1.10816.
Pełny tekst źródłaFu, Chih-Wei, Yun-Jung Hsieh, Tzu Ting Chang, et al. "Anticancer efficacy of unique pyridine-based tetraindoles." European Journal of Medicinal Chemistry 104 (November 2015): 165–76. http://dx.doi.org/10.1016/j.ejmech.2015.09.032.
Pełny tekst źródłaAlven, Sibusiso, and Blessing Atim Aderibigbe. "The Therapeutic Efficacy of Dendrimer and Micelle Formulations for Breast Cancer Treatment." Pharmaceutics 12, no. 12 (2020): 1212. http://dx.doi.org/10.3390/pharmaceutics12121212.
Pełny tekst źródłaLi, Fan, Xinqing Fu, Qingqing Huo, and Wantao Chen. "Research Progress on the Nano-Delivery Systems of Antitumor Drugs." Nano LIFE 10, no. 01n02 (2020): 2040006. http://dx.doi.org/10.1142/s1793984420400061.
Pełny tekst źródłaXu, Tengyan, Chunhui Liang, Debin Zheng, et al. "Nuclear delivery of dual anticancer drug-based nanomedicine constructed by cisplatinum-induced peptide self-assembly." Nanoscale 12, no. 28 (2020): 15275–82. http://dx.doi.org/10.1039/d0nr00143k.
Pełny tekst źródłaVerma, Poonam, Sanjukta Naik, Pranati Nanda, Silvi Banerjee, Satyanarayan Naik, and Amit Ghosh. "In Vitro Anticancer Activity of Virgin Coconut Oil and its Fractions in Liver and Oral Cancer Cells." Anti-Cancer Agents in Medicinal Chemistry 19, no. 18 (2020): 2223–30. http://dx.doi.org/10.2174/1871520619666191021160752.
Pełny tekst źródłaSafwat, Mohamed A., Bothaina A. Kandil, Mohamed A. Elblbesy, Ghareb M. Soliman, and Nermin E. Eleraky. "Epigallocatechin-3-Gallate-Loaded Gold Nanoparticles: Preparation and Evaluation of Anticancer Efficacy in Ehrlich Tumor-Bearing Mice." Pharmaceuticals 13, no. 9 (2020): 254. http://dx.doi.org/10.3390/ph13090254.
Pełny tekst źródłaMafe, Alice N., and Dietrich Büsselberg. "Microbiome Integrity Enhances the Efficacy and Safety of Anticancer Drug." Biomedicines 13, no. 2 (2025): 422. https://doi.org/10.3390/biomedicines13020422.
Pełny tekst źródłaThanasak, Jitkamol, Sittiruk Roytrakul, Rudee Surarit, et al. "Anticancer properties of peptides and protein hydrolysates derived from Asian water monitor (Varanus salvator) serum." PLOS ONE 20, no. 4 (2025): e0321531. https://doi.org/10.1371/journal.pone.0321531.
Pełny tekst źródłaWang, Yan, Wei Xie, Juliette Humeau, et al. "Autophagy induction by thiostrepton improves the efficacy of immunogenic chemotherapy." Journal for ImmunoTherapy of Cancer 8, no. 1 (2020): e000462. http://dx.doi.org/10.1136/jitc-2019-000462.
Pełny tekst źródłaGarattini, S. "Efficacy, safety, and cost of new anticancer drugs." BMJ 325, no. 7358 (2002): 269–71. http://dx.doi.org/10.1136/bmj.325.7358.269.
Pełny tekst źródłaCalvert, H. "Efficacy, safety, and cost of new anticancer drugs." BMJ 325, no. 7375 (2002): 1302a—1302. http://dx.doi.org/10.1136/bmj.325.7375.1302/a.
Pełny tekst źródłaSharma, Nikita, Monisha Singhal, R. Mankamna Kumari, et al. "Diosgenin Loaded Polymeric Nanoparticles with Potential Anticancer Efficacy." Biomolecules 10, no. 12 (2020): 1679. http://dx.doi.org/10.3390/biom10121679.
Pełny tekst źródłaNazari-Vanani, R., K. Karimian, N. Azarpira, and H. Heli. "Capecitabine-loaded nanoniosomes and evaluation of anticancer efficacy." Artificial Cells, Nanomedicine, and Biotechnology 47, no. 1 (2019): 420–26. http://dx.doi.org/10.1080/21691401.2018.1559179.
Pełny tekst źródłaGaspar, Diana, Ana Salomé Veiga, Chomdao Sinthuvanich, Joel P. Schneider, and Miguel A. R. B. Castanho. "Anticancer Peptide SVS-1: Efficacy Precedes Membrane Neutralization." Biochemistry 51, no. 32 (2012): 6263–65. http://dx.doi.org/10.1021/bi300836r.
Pełny tekst źródłaKonstantinov, S. M., R. Kaminsky, R. Brun, M. R. Berger, and U. Zillmann. "Efficacy of anticancer alkylphosphocholines in Trypanosoma brucei subspecies." Acta Tropica 64, no. 3-4 (1997): 145–54. http://dx.doi.org/10.1016/s0001-706x(96)00628-6.
Pełny tekst źródłaDeutsch, Eric, Cyrus Chargari, Lorenzo Galluzzi, and Guido Kroemer. "Optimising efficacy and reducing toxicity of anticancer radioimmunotherapy." Lancet Oncology 20, no. 8 (2019): e452-e463. http://dx.doi.org/10.1016/s1470-2045(19)30171-8.
Pełny tekst źródłaConforti, F., and L. Pala. "Sex-based heterogeneity of efficacy of anticancer immunotherapy." Annals of Oncology 30 (October 2019): v522—v523. http://dx.doi.org/10.1093/annonc/mdz253.110.
Pełny tekst źródłaHampton, Tracy. "Newly Designed Protein Augments Efficacy of Anticancer Antibodies." JAMA 310, no. 1 (2013): 22. http://dx.doi.org/10.1001/jama.2013.7878.
Pełny tekst źródłaSakamoto, Junichi, Koji Oba, Takanori Matsui, and Michiya Kobayashi. "Efficacy of Oral Anticancer Agents for Colorectal Cancer." Diseases of the Colon & Rectum 49 (October 2006): S82—S91. http://dx.doi.org/10.1007/s10350-006-0601-7.
Pełny tekst źródłaShah, Hassan, Asadullah Madni, Nina Filipczak, et al. "Cisplatin-loaded thermoresponsive liposomes for enhanced anticancer efficacy." Journal of Drug Delivery Science and Technology 84 (June 2023): 104509. http://dx.doi.org/10.1016/j.jddst.2023.104509.
Pełny tekst źródłaNaumenko, V. A., A. S. Garanina, S. S. Vodopyanov, et al. "Magnetic resonance imaging for predicting personalized antitumor nanomedicine efficacy." NANOMEDICINE, no. 6 (December 30, 2018): 21–24. http://dx.doi.org/10.24075/brsmu.2018.086.
Pełny tekst źródłaTikhomirova, A. V. "Criteria for Evaluation of Clinical Efficacy of Anticancer Medicines." Bulletin of the Scientific Centre for Expert Evaluation of Medicinal Products 9, no. 1 (2019): 34–40. http://dx.doi.org/10.30895/1991-2919-2019-9-1-34-40.
Pełny tekst źródłaWang, Pu, Jinxiu Wang, Haowen Tan, et al. "Acid- and reduction-sensitive micelles for improving the drug delivery efficacy for pancreatic cancer therapy." Biomaterials Science 6, no. 5 (2018): 1262–70. http://dx.doi.org/10.1039/c7bm01051f.
Pełny tekst źródłaKochenderfer, J. N., and R. E. Gress. "A Comparison and Critical Analysis of Preclinical Anticancer Vaccination Strategies." Experimental Biology and Medicine 232, no. 9 (2007): 1130–41. http://dx.doi.org/10.3181/0702-mr-42.
Pełny tekst źródłaKim, Tae Hun, Dong Hoon Suh, Mi-Kyung Kim, and Yong Sang Song. "Metformin against Cancer Stem Cells through the Modulation of Energy Metabolism: Special Considerations on Ovarian Cancer." BioMed Research International 2014 (2014): 1–11. http://dx.doi.org/10.1155/2014/132702.
Pełny tekst źródłaKhan, Mahir, Ryan Huu-Tuan Nguyen, James Love, et al. "Safety and efficacy of COVID-19 vaccination in patients receiving systemic anticancer therapy." Journal of Clinical Oncology 39, no. 28_suppl (2021): 245. http://dx.doi.org/10.1200/jco.2020.39.28_suppl.245.
Pełny tekst źródłaYoon, Wonsuck, Yongsung Park, Seunghyun Kim, Yongkeun Park, and Chul Yong Kim. "Combined Therapy with microRNA-Expressing Salmonella and Irradiation in Melanoma." Microorganisms 9, no. 11 (2021): 2408. http://dx.doi.org/10.3390/microorganisms9112408.
Pełny tekst źródłaEity, Tanzila Akter, Md Shimul Bhuia, Raihan Chowdhury, et al. "Anticancer Efficacy of Decursin: A Comprehensive Review with Mechanistic Insights." Future Pharmacology 5, no. 2 (2025): 17. https://doi.org/10.3390/futurepharmacol5020017.
Pełny tekst źródłaRachamalla, Hari Krishnareddy, Santanu Bhattacharya, Ajaz Ahmad, et al. "Enriched pharmacokinetic behavior and antitumor efficacy of thymoquinone by liposomal delivery." Nanomedicine 16, no. 8 (2021): 641–56. http://dx.doi.org/10.2217/nnm-2020-0470.
Pełny tekst źródłaAlven, Sibusiso, and Blessing Atim Aderibigbe. "Efficacy of Polymer-Based Nanocarriers for Co-Delivery of Curcumin and Selected Anticancer Drugs." Nanomaterials 10, no. 8 (2020): 1556. http://dx.doi.org/10.3390/nano10081556.
Pełny tekst źródłaAlanazi, Sitah, ZabnAllah M. Alaizeri, Rashid Lateef, Nawal Madkhali, Abdullah Alharbi, and Maqusood Ahamed. "Zn Doping Improves the Anticancer Efficacy of SnO2 Nanoparticles." Applied Sciences 13, no. 22 (2023): 12456. http://dx.doi.org/10.3390/app132212456.
Pełny tekst źródłaBretin, Ludovic, Aline Pinon, Soukaina Bouramtane, et al. "Photodynamic Therapy Activity of New Porphyrin-Xylan-Coated Silica Nanoparticles in Human Colorectal Cancer." Cancers 11, no. 10 (2019): 1474. http://dx.doi.org/10.3390/cancers11101474.
Pełny tekst źródłaMeena, J., and K. S. Santhy. "ANTICANCER EFFICACY OF CYCLEA PELTATA ON HUMAN BREAST CARCINOMA CELLS." INDIAN DRUGS 54, no. 06 (2017): 53–57. http://dx.doi.org/10.53879/id.54.06.10783.
Pełny tekst źródłaYou, Yuanyuan, Liye Yang, Lizhen He, and Tianfeng Chen. "Tailored mesoporous silica nanosystem with enhanced permeability of the blood–brain barrier to antagonize glioblastoma." Journal of Materials Chemistry B 4, no. 36 (2016): 5980–90. http://dx.doi.org/10.1039/c6tb01329e.
Pełny tekst źródłaOu, Yuan, Kai Chen, Hao Cai, et al. "Enzyme/pH-sensitive polyHPMA–DOX conjugate as a biocompatible and efficient anticancer agent." Biomaterials Science 6, no. 5 (2018): 1177–88. http://dx.doi.org/10.1039/c8bm00095f.
Pełny tekst źródłaKah, Glory, Rahul Chandran, and Heidi Abrahamse. "Biogenic Silver Nanoparticles for Targeted Cancer Therapy and Enhancing Photodynamic Therapy." Cells 12, no. 15 (2023): 2012. http://dx.doi.org/10.3390/cells12152012.
Pełny tekst źródłaD. N. Mehta, P. H. Patel, S. D. Mandal, and G. S. Chakraborthy. "In-silico APPROACH FOR VIRTUAL SCREENING AND MOLECULAR DOCKING OF FLAVONOIDS AS ERBB4 KINASE INHIBITORS IN THE TREATMENT OF CANCER." Rasayan J. Chem 17, no. 02 (2024): 605–10. http://dx.doi.org/10.31788/rjc.2023.1728769.
Pełny tekst źródłaConte, Claudia, Giovanni Dal Poggetto, Viola Schiano Di Cola, et al. "PEGylated cationic nanoassemblies based on triblock copolymers to combine siRNA therapeutics with anticancer drugs." Biomaterials Science 9, no. 18 (2021): 6251–65. http://dx.doi.org/10.1039/d1bm00909e.
Pełny tekst źródłaKiełbowski, Kajetan, Paulina Plewa, Jan Zadworny, Estera Bakinowska, Rafał Becht, and Andrzej Pawlik. "Recent Advances in the Development and Efficacy of Anti-Cancer Vaccines—A Narrative Review." Vaccines 13, no. 3 (2025): 237. https://doi.org/10.3390/vaccines13030237.
Pełny tekst źródłaMatsuno, Yusuke, Mai Hyodo, Haruka Fujimori, Atsuhiro Shimizu, and Ken-ichi Yoshioka. "Sensitization of Cancer Cells to Radiation and Topoisomerase I Inhibitor Camptothecin Using Inhibitors of PARP and Other Signaling Molecules." Cancers 10, no. 10 (2018): 364. http://dx.doi.org/10.3390/cancers10100364.
Pełny tekst źródłaKarabina, E. V., D. D. Sakaeva, and O. N. Lipatov. "Efficacy of Off-Label Use of Anticancer Drugs in Oncology." Creative surgery and oncology 13, no. 2 (2023): 151–58. http://dx.doi.org/10.24060/2076-3093-2023-13-2-151-158.
Pełny tekst źródłaAbdelmonem, M., S. E. Hammad, H. H. Elshikh, et al. "Anticancer Efficacy of Biosynthesized Zinc Oxide and Gold Nanoparticles." American Journal of Clinical Pathology 162, Supplement_1 (2024): S121. http://dx.doi.org/10.1093/ajcp/aqae129.269.
Pełny tekst źródłaWallace, H. M., and A. V. Fraser. "Polyamine analogues as anticancer drugs." Biochemical Society Transactions 31, no. 2 (2003): 393–96. http://dx.doi.org/10.1042/bst0310393.
Pełny tekst źródłaChen, Qian, Jing Wu, Xiang Li, Ziyi Ye, Hailong Yang, and Lixian Mu. "Amphibian-Derived Natural Anticancer Peptides and Proteins: Mechanism of Action, Application Strategies, and Prospects." International Journal of Molecular Sciences 24, no. 18 (2023): 13985. http://dx.doi.org/10.3390/ijms241813985.
Pełny tekst źródłaKim, Ryungsa, Takanori Kin, and William T. Beck. "Impact of Complex Apoptotic Signaling Pathways on Cancer Cell Sensitivity to Therapy." Cancers 16, no. 5 (2024): 984. http://dx.doi.org/10.3390/cancers16050984.
Pełny tekst źródłaKumar, Girish, Tarun Virmani, Ashwani Sharma, and Kamla Pathak. "Codelivery of Phytochemicals with Conventional Anticancer Drugs in Form of Nanocarriers." Pharmaceutics 15, no. 3 (2023): 889. http://dx.doi.org/10.3390/pharmaceutics15030889.
Pełny tekst źródła