Gotowa bibliografia na temat „Arithmetical hyperplanes”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Arithmetical hyperplanes”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Arithmetical hyperplanes"

1

Bergeron, Nicolas, Frédéric Haglund, and Daniel T. Wise. "Hyperplane sections in arithmetic hyperbolic manifolds." Journal of the London Mathematical Society 83, no. 2 (2011): 431–48. http://dx.doi.org/10.1112/jlms/jdq082.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Walter, Charles H. "Hyperplane sections of arithmetically Cohen-Macaulay curves." Proceedings of the American Mathematical Society 123, no. 9 (1995): 2651. http://dx.doi.org/10.1090/s0002-9939-1995-1260185-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Ru, Min. "Geometric and Arithmetic Aspects of P n Minus Hyperplanes." American Journal of Mathematics 117, no. 2 (1995): 307. http://dx.doi.org/10.2307/2374916.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Hanniel, Iddo. "Solving multivariate polynomial systems using hyperplane arithmetic and linear programming." Computer-Aided Design 46 (January 2014): 101–9. http://dx.doi.org/10.1016/j.cad.2013.08.022.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Browning, Tim, and Shuntaro Yamagishi. "Arithmetic of higher-dimensional orbifolds and a mixed Waring problem." Mathematische Zeitschrift 299, no. 1-2 (2021): 1071–101. http://dx.doi.org/10.1007/s00209-021-02695-w.

Pełny tekst źródła
Streszczenie:
AbstractWe study the density of rational points on a higher-dimensional orbifold $$(\mathbb {P}^{n-1},\Delta )$$ ( P n - 1 , Δ ) when $$\Delta $$ Δ is a $$\mathbb {Q}$$ Q -divisor involving hyperplanes. This allows us to address a question of Tanimoto about whether the set of rational points on such an orbifold constitutes a thin set. Our approach relies on the Hardy–Littlewood circle method to first study an asymptotic version of Waring’s problem for mixed powers. In doing so we make crucial use of the recent resolution of the main conjecture in Vinogradov’s mean value theorem, due to Bourgai
Style APA, Harvard, Vancouver, ISO itp.
6

Andreasson, Rolf, and Robert J. Berman. "None." Journal de l’École polytechnique — Mathématiques 12 (June 17, 2025): 983–1018. https://doi.org/10.5802/jep.304.

Pełny tekst źródła
Streszczenie:
In our previous work we conjectured—inspired by an algebro-geometric result of Fujita—that the height of an arithmetic Fano variety 𝒳 of relative dimension n is maximal when 𝒳 is the projective space ℙ ℤ n over the integers, endowed with the Fubini-Study metric, if the corresponding complex Fano variety is K-semistable. In this work the conjecture is settled for diagonal hypersurfaces in ℙ ℤ n+1 . The proof is based on a logarithmic extension of our previous conjecture, of independent interest, which is established for toric log Fano varieties of relative dimension at most three, hyperplane ar
Style APA, Harvard, Vancouver, ISO itp.
7

Hoelscher, Zachary. "Semicomplete Arithmetic Sequences, Division of Hypercubes, and the Pell Constant." PUMP Journal of Undergraduate Research 4 (February 25, 2021): 108–16. http://dx.doi.org/10.46787/pump.v4i0.2524.

Pełny tekst źródła
Streszczenie:
In this paper we produce a few continuations of our previous work on partitions into fractions. Specifically, we study strictly increasing sequences of positive integers such that there are partitions for all natural numbers less than the floor of the sum of the first j terms divided by j, where j is greater than two. We also require that all summands be distinct terms drawn from this series of fractions. We call such sequences “semicomplete”. We find that there are only three semicomplete arithmetic sequences. We also study sequences that give the maximum number of pieces that an M dimensiona
Style APA, Harvard, Vancouver, ISO itp.
8

Fraser, Jonathan M., Kota Saito, and Han Yu. "Dimensions of Sets Which Uniformly Avoid Arithmetic Progressions." International Mathematics Research Notices 2019, no. 14 (2017): 4419–30. http://dx.doi.org/10.1093/imrn/rnx261.

Pełny tekst źródła
Streszczenie:
AbstractWe provide estimates for the dimensions of sets in $\mathbb{R}$ which uniformly avoid finite arithmetic progressions (APs). More precisely, we say $F$ uniformly avoids APs of length $k \geq 3$ if there is an $\epsilon>0$ such that one cannot find an AP of length $k$ and gap length $\Delta>0$ inside the $\epsilon \Delta$ neighbourhood of $F$. Our main result is an explicit upper bound for the Assouad (and thus Hausdorff) dimension of such sets in terms of $k$ and $\epsilon$. In the other direction, we provide examples of sets which uniformly avoid APs of a given length but still h
Style APA, Harvard, Vancouver, ISO itp.
9

Amerik, Ekaterina, and Misha Verbitsky. "Collections of Orbits of Hyperplane Type in Homogeneous Spaces, Homogeneous Dynamics, and Hyperkähler Geometry." International Mathematics Research Notices 2020, no. 1 (2018): 25–38. http://dx.doi.org/10.1093/imrn/rnx319.

Pełny tekst źródła
Streszczenie:
Abstract Consider the space M = O(p, q)/O(p) × O(q) of positive p-dimensional subspaces in a pseudo-Euclidean space V of signature (p, q), where p > 0, q > 1 and $(p,q)\neq (1,2)$, with integral structure: $V = V_{\mathbb{Z}} \otimes \mathbb{Z}$. Let Γ be an arithmetic subgroup in $G = O(V_{\mathbb{Z}})$, and $R \subset V_{\mathbb{Z}}$ a Γ-invariant set of vectors with negative square. Denote by R⊥ the set of all positive p-planes W ⊂ V such that the orthogonal complement W⊥ contains some r ∈ R. We prove that either R⊥ is dense in M or Γ acts on R with finitely many orbits. This
Style APA, Harvard, Vancouver, ISO itp.
10

Bandyopadhyay, Saptarashmi, Jason Xu, Neel Pawar, and David Touretzky. "Interactive Visualizations of Word Embeddings for K-12 Students." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 11 (2022): 12713–20. http://dx.doi.org/10.1609/aaai.v36i11.21548.

Pełny tekst źródła
Streszczenie:
Word embeddings, which represent words as dense feature vectors, are widely used in natural language processing. In their seminal paper on word2vec, Mikolov and colleagues showed that a feature space created by training a word prediction network on a large text corpus will encode semantic information that supports analogy by vector arithmetic, e.g., "king" minus "man" plus "woman" equals "queen". To help novices appreciate this idea, people have sought effective graphical representations of word embeddings. We describe a new interactive tool for visually exploring word embeddings. Our tool all
Style APA, Harvard, Vancouver, ISO itp.
Więcej źródeł

Rozprawy doktorskie na temat "Arithmetical hyperplanes"

1

Laboureix, Bastien. "Hyperplans arithmétiques : connexité, reconnaissance et transformations." Electronic Thesis or Diss., Université de Lorraine, 2024. http://www.theses.fr/2024LORR0040.

Pełny tekst źródła
Streszczenie:
Le monde numérique est parsemé de structures mathématiques discrètes, destinées à être facilement manipulables par un ordinateur tout en donnant à notre cerveau l'impression d'être de belles formes réelles continues. Les images numériques peuvent ainsi être vues comme des sous-ensembles de Z^2. En géométrie discrète, nous nous intéressons aux structures de Z^d et cherchons à établir des propriétés géométriques ou topologiques sur ces objets. Si les questions que nous nous posons sont relativement simples en géométrie euclidienne, elles deviennent beaucoup plus difficiles en géométrie discrète
Style APA, Harvard, Vancouver, ISO itp.

Książki na temat "Arithmetical hyperplanes"

1

Barg, Alexander, and O. R. Musin. Discrete geometry and algebraic combinatorics. American Mathematical Society, 2014.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Mathematical Legacy of Richard P. Stanley. American Mathematical Society, 2016.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Części książek na temat "Arithmetical hyperplanes"

1

Jamet, Damien, and Jean-Luc Toutant. "On the Connectedness of Rational Arithmetic Discrete Hyperplanes." In Discrete Geometry for Computer Imagery. Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11907350_19.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Domenjoud, Eric, Bastien Laboureix, and Laurent Vuillon. "Facet Connectedness of Arithmetic Discrete Hyperplanes with Non-Zero Shift." In Discrete Geometry for Computer Imagery. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-14085-4_4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Laboureix, Bastien, and Isabelle Debled-Rennesson. "Recognition of Arithmetic Line Segments and Hyperplanes Using the Stern-Brocot Tree." In Lecture Notes in Computer Science. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-57793-2_2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!