Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Atom probe tomograpghy.

Artykuły w czasopismach na temat „Atom probe tomograpghy”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Atom probe tomograpghy”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Miller, M. K. "Atom Probe Tomography: A Tutorial." Microscopy and Microanalysis 6, S2 (August 2000): 1188–89. http://dx.doi.org/10.1017/s1431927600038435.

Pełny tekst źródła
Streszczenie:
Atom probe tomography (APT) is an ultrahigh resolution microanalytical technique that enables the spatial coordinates and elemental identities of the atoms in a small volume of material to be determined. The specimen volume that may be analyzed is typically ∼ 10 to 20 nm square by ∼ 100 to 250 nm deep, and contains up to ∼ 1 million atoms. The distribution of the solute atoms within this volume may then be reconstructed from these data. The compositions of small volumes are determined by simply counting the number of atoms of each type within that volume, and thus the technique provides a fund
Style APA, Harvard, Vancouver, ISO itp.
2

Chiaramonti, Ann N., Luis Miaja-Avila, Paul T. Blanchard, David R. Diercks, Brian P. Gorman, and Norman A. Sanford. "A Three-Dimensional Atom Probe Microscope Incorporating a Wavelength-Tuneable Femtosecond-Pulsed Coherent Extreme Ultraviolet Light Source." MRS Advances 4, no. 44-45 (2019): 2367–75. http://dx.doi.org/10.1557/adv.2019.296.

Pełny tekst źródła
Streszczenie:
ABSTRACTPulsed coherent extreme ultraviolet (EUV) radiation is a potential alternative to pulsed near-ultraviolet (NUV) wavelengths for atom probe tomography. EUV radiation has the benefit of high absorption within the first few nm of the sample surface for elements across the entire periodic table. In addition, EUV radiation may also offer athermal field ion emission pathways through direct photoionization or core-hole Auger decay processes, which are not possible with the (much lower) photon energies used in conventional NUV laser-pulsed atom probe. We report preliminary results from what we
Style APA, Harvard, Vancouver, ISO itp.
3

Takahashi, Jun, Kazuto Kawakami та Yukiko Kobayashi. "Study on Quantitative Analysis of Carbon and Nitrogen in Stoichiometric θ-Fe3C and γ′-Fe4N by Atom Probe Tomography". Microscopy and Microanalysis 26, № 2 (5 березня 2020): 185–93. http://dx.doi.org/10.1017/s1431927620000045.

Pełny tekst źródła
Streszczenie:
AbstractThe quantitative analysis performance of carbon and nitrogen was investigated using stoichiometric θ-Fe3C (25 at% C) and γ′-Fe4N (~20 at% N) precipitates in pulsed voltage and pulsed laser atom probes. The dependencies of specimen temperature, pulse fraction, and laser pulse energy on the apparent concentrations of carbon and nitrogen were measured. Good coincidence with 25 at% carbon concentration in θ-Fe3C was obtained for the pulsed voltage atom probe by considering the mean number of carbon atoms per ion at 24 Da and the detection loss of iron, while better coincidence was obtained
Style APA, Harvard, Vancouver, ISO itp.
4

Miller, M. K. "Atom Probe Tomography Of Interfaces." Microscopy and Microanalysis 5, S2 (August 1999): 118–19. http://dx.doi.org/10.1017/s143192760001391x.

Pełny tekst źródła
Streszczenie:
The technique of atom probe tomography (APT) enables the x, y, and z coordinates and the elemental identities of the atoms in a small volume to be determined at the atomic level. Therefore, the APT technique may be used to characterize solute segregation to interfaces and precipitation in terms of concentration gradients and precipitate morphology. This type of information may be used to optimize the design of alloys.The material that was used to illustrate the capabilities of atom probe tomography is a complex polycrystalline nickel-based superalloy, Alloy 718. The composition of this commerc
Style APA, Harvard, Vancouver, ISO itp.
5

Felfer, P., L. T. Stephenson, and T. Li. "Atom Probe Tomography." Practical Metallography 55, no. 8 (August 16, 2018): 515–26. http://dx.doi.org/10.3139/147.110543.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Kelly, Thomas F., and Michael K. Miller. "Atom probe tomography." Review of Scientific Instruments 78, no. 3 (March 2007): 031101. http://dx.doi.org/10.1063/1.2709758.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Miller, M. K., and R. G. Forbes. "Atom probe tomography." Materials Characterization 60, no. 6 (June 2009): 461–69. http://dx.doi.org/10.1016/j.matchar.2009.02.007.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Kim, Se-Ho, Ji Yeong Lee, Jae-Pyoung Ahn, and Pyuck-Pa Choi. "Fabrication of Atom Probe Tomography Specimens from Nanoparticles Using a Fusible Bi–In–Sn Alloy as an Embedding Medium." Microscopy and Microanalysis 25, no. 2 (February 4, 2019): 438–46. http://dx.doi.org/10.1017/s1431927618015556.

Pełny tekst źródła
Streszczenie:
AbstractWe propose a new method for preparing atom probe tomography specimens from nanoparticles using a fusible bismuth–indium–tin alloy as an embedding medium. Iron nanoparticles synthesized by the sodium borohydride reduction method were chosen as a model system. The as-synthesized iron nanoparticles were embedded within the fusible alloy using focused ion beam milling and ion-milled to needle-shaped atom probe specimens under cryogenic conditions. An atom probe analysis revealed boron atoms in a detected iron nanoparticle, indicating that boron from the sodium borohydride reductant was inc
Style APA, Harvard, Vancouver, ISO itp.
9

Kelly, Thomas F., and David J. Larson. "Atom Probe Tomography 2012." Annual Review of Materials Research 42, no. 1 (August 4, 2012): 1–31. http://dx.doi.org/10.1146/annurev-matsci-070511-155007.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Cerezo, Alfred, Peter H. Clifton, Mark J. Galtrey, Colin J. Humphreys, Thomas F. Kelly, David J. Larson, Sergio Lozano-Perez, et al. "Atom probe tomography today." Materials Today 10, no. 12 (December 2007): 36–42. http://dx.doi.org/10.1016/s1369-7021(07)70306-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Miller, Michael K. "Atom Probe Tomography and the Local Electrode Atom Probe." Microscopy and Microanalysis 10, S02 (August 2004): 150–51. http://dx.doi.org/10.1017/s1431927604881157.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Seidman, David N., and Krystyna Stiller. "An Atom-Probe Tomography Primer." MRS Bulletin 34, no. 10 (October 2009): 717–24. http://dx.doi.org/10.1557/mrs2009.194.

Pełny tekst źródła
Streszczenie:
AbstractAtom-probe tomography (APT) is in the midst of a dynamic renaissance as a result of the development of well-engineered commercial instruments that are both robust and ergonomic and capable of collecting large data sets, hundreds of millions of atoms, in short time periods compared to their predecessor instruments. An APT setup involves a field-ion microscope coupled directly to a special time-of-flight (TOF) mass spectrometer that permits one to determine the mass-to-charge states of individual field-evaporated ions plus theirx-,y-, andz-coordinates in a specimen in direct space with s
Style APA, Harvard, Vancouver, ISO itp.
13

Geiser, Brian P., Thomas F. Kelly, David J. Larson, Jason Schneir, and Jay P. Roberts. "Spatial Distribution Maps for Atom Probe Tomography." Microscopy and Microanalysis 13, no. 6 (November 14, 2007): 437–47. http://dx.doi.org/10.1017/s1431927607070948.

Pełny tekst źródła
Streszczenie:
A real-space technique for finding structural information in atom probe tomographs, spatial distribution maps (SDM), is described. The mechanics of the technique are explained, and it is then applied to some test cases. Many applications of SDM in atom probe tomography are illustrated with examples including finding crystal lattices, correcting lattice strains in reconstructed images, quantifying trajectory aberrations, quantifying spatial resolution, quantifying chemical ordering, dark-field imaging, determining orientation relationships, extracting radial distribution functions, and measurin
Style APA, Harvard, Vancouver, ISO itp.
14

Kasian, Olga, Simon Geiger, Tong Li, Jan-Philipp Grote, Kevin Schweinar, Siyuan Zhang, Christina Scheu, et al. "Degradation of iridium oxides via oxygen evolution from the lattice: correlating atomic scale structure with reaction mechanisms." Energy & Environmental Science 12, no. 12 (2019): 3548–55. http://dx.doi.org/10.1039/c9ee01872g.

Pełny tekst źródła
Streszczenie:
Combination of atom probe tomography, isotope-labelling and online electrochemical mass spectrometry provides direct correlation of atomic scale structure of Ir oxide catalysts with the mechanism of oxygen formation from the lattice atoms.
Style APA, Harvard, Vancouver, ISO itp.
15

Han, Bin, Jie Wei, Feng He, Da Chen, Zhi Wang, Alice Hu, Wenzhong Zhou та Ji Kai. "Elemental Phase Partitioning in the γ-γ″ Ni2CoFeCrNb0.15 High Entropy Alloy". Entropy 20, № 12 (28 листопада 2018): 910. http://dx.doi.org/10.3390/e20120910.

Pełny tekst źródła
Streszczenie:
The partitioning of the alloying elements into the γ″ nanoparticles in a Ni2CoFeCrNb0.15 high entropy alloy was studied by the combination of atom probe tomography and first-principles calculations. The atom probe tomography results show that the Co, Fe, and Cr atoms incorporated into the Ni3Nb-type γ″ nanoparticles but their partitioning behaviors are significantly different. The Co element is much easier to partition into the γ″ nanoparticles than Fe and Cr elements. The first-principles calculations demonstrated that the different partitioning behaviors of Co, Fe and Cr elements into the γ″
Style APA, Harvard, Vancouver, ISO itp.
16

van Vreeswijk, S. H., M. Monai, R. Oord, J. E. Schmidt, E. T. C. Vogt, J. D. Poplawsky, and B. M. Weckhuysen. "Nano-scale insights regarding coke formation in zeolite SSZ-13 subject to the methanol-to-hydrocarbons reaction." Catalysis Science & Technology 12, no. 4 (2022): 1220–28. http://dx.doi.org/10.1039/d1cy01938d.

Pełny tekst źródła
Streszczenie:
A correlation between the micro- and nano-scale coking behavior of SSZ-13 was discovered with in situ/operando spectroscopy and atom probe tomography (APT), which allows for spatial reconstruction and analysis of relations between framework elements and carbon atoms.
Style APA, Harvard, Vancouver, ISO itp.
17

Larson, David, Dan Lenz, Isabelle Martin, Ty Prosa, David Reinhard, Peter Clifton, Brian Geiser, Robert Ulfig, and Joe Bunton. "Directions in Atom Probe Tomography." Microscopy and Microanalysis 27, S1 (July 30, 2021): 2464–66. http://dx.doi.org/10.1017/s1431927621008801.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Blavette, Didier, and Sébastien Duguay. "Atom probe tomography in nanoelectronics." European Physical Journal Applied Physics 68, no. 1 (September 26, 2014): 10101. http://dx.doi.org/10.1051/epjap/2014140060.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Reinhard, D. A., T. R. Payne, E. M. Strennen, E. Oltman, B. P. Geiser, G. S. Sobering, D. R. Lenz, et al. "Atom Probe Tomography Productivity Enhancements." Microscopy and Microanalysis 25, S2 (August 2019): 522–23. http://dx.doi.org/10.1017/s1431927619003349.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Gault, Baptiste, and David J. Larson. "Atom probe tomography: Looking forward." Scripta Materialia 148 (April 2018): 73–74. http://dx.doi.org/10.1016/j.scriptamat.2017.11.009.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Parman, S. W., D. R. Diercks, B. P. Gorman, and R. F. Cooper. "Atom probe tomography of isoferroplatinum." American Mineralogist 100, no. 4 (April 1, 2015): 852–60. http://dx.doi.org/10.2138/am-2015-4998.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Gnaser, Hubert. "Atom probe tomography of nanostructures." Surface and Interface Analysis 46, S1 (April 15, 2014): 383–88. http://dx.doi.org/10.1002/sia.5507.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Gault, Baptiste, Michael P. Moody, Frederic De Geuser, Alex La Fontaine, Leigh T. Stephenson, Daniel Haley, and Simon P. Ringer. "Spatial Resolution in Atom Probe Tomography." Microscopy and Microanalysis 16, no. 1 (January 18, 2010): 99–110. http://dx.doi.org/10.1017/s1431927609991267.

Pełny tekst źródła
Streszczenie:
AbstractThis article addresses gaps in definitions and a lack of standard measurement techniques to assess the spatial resolution in atom probe tomography. This resolution is known to be anisotropic, being better in-depth than laterally. Generally the presence of atomic planes in the tomographic reconstruction is considered as being a sufficient proof of the quality of the spatial resolution of the instrument. Based on advanced spatial distribution maps, an analysis methodology that interrogates the local neighborhood of the atoms within the tomographic reconstruction, it is shown how both the
Style APA, Harvard, Vancouver, ISO itp.
24

Arslan, I., EA Marquis, M. Homer, MA Hekmaty, and NC Bartelt. "Correlating Electron Tomography and Atom Probe Tomography." Microscopy and Microanalysis 14, S2 (August 2008): 1044–45. http://dx.doi.org/10.1017/s1431927608087746.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Moody, Michael P., Baptiste Gault, Leigh T. Stephenson, Ross K. W. Marceau, Rebecca C. Powles, Anna V. Ceguerra, Andrew J. Breen, and Simon P. Ringer. "Lattice Rectification in Atom Probe Tomography: Toward True Three-Dimensional Atomic Microscopy." Microscopy and Microanalysis 17, no. 2 (March 8, 2011): 226–39. http://dx.doi.org/10.1017/s1431927610094535.

Pełny tekst źródła
Streszczenie:
AbstractAtom probe tomography (APT) represents a significant step toward atomic resolution microscopy, analytically imaging individual atoms with highly accurate, though imperfect, chemical identity and three-dimensional (3D) positional information. Here, a technique to retrieve crystallographic information from raw APT data and restore the lattice-specific atomic configuration of the original specimen is presented. This lattice rectification technique has been applied to a pure metal, W, and then to the analysis of a multicomponent Al alloy. Significantly, the atoms are located to their true
Style APA, Harvard, Vancouver, ISO itp.
26

Rolland, Nicolas, François Vurpillot, Sébastien Duguay, and Didier Blavette. "A Meshless Algorithm to Model Field Evaporation in Atom Probe Tomography." Microscopy and Microanalysis 21, no. 6 (November 9, 2015): 1649–56. http://dx.doi.org/10.1017/s1431927615015184.

Pełny tekst źródła
Streszczenie:
AbstractAn alternative approach for simulating the field evaporation process in atom probe tomography is presented. The model uses the electrostatic Robin’s equation to directly calculate charge distribution over the tip apex conducting surface, without the need for a supporting mesh. The partial ionization state of the surface atoms is at the core of the method. Indeed, each surface atom is considered as a point charge, which is representative of its evaporation probability. The computational efficiency is ensured by an adapted version of the Barnes–Hut N-body problem algorithm. Standard deso
Style APA, Harvard, Vancouver, ISO itp.
27

Xiong, Xiangyuan, and Matthew Weyland. "Microstructural Characterization of an Al-Li-Mg-Cu Alloy by Correlative Electron Tomography and Atom Probe Tomography." Microscopy and Microanalysis 20, no. 4 (May 12, 2014): 1022–28. http://dx.doi.org/10.1017/s1431927614000798.

Pełny tekst źródła
Streszczenie:
AbstractCorrelative electron tomography and atom probe tomography have been carried out successfully on the same region of a commercial 8090 aluminum alloy (Al-Li-Mg-Cu). The combination of the two techniques allows accurate geometric reconstruction of the atom probe tomography data verified by crystallographic information retrieved from the reconstruction. Quantitative analysis of the precipitate phase compositions and volume fractions of each phase have been obtained from the atom probe tomography and electron tomography at various scales, showing strong agreement between both techniques.
Style APA, Harvard, Vancouver, ISO itp.
28

Seidman, David N. "Perspective: From field-ion microscopy of single atoms to atom-probe tomography: A journey: “Atom-probe tomography” [Rev. Sci. Instrum. 78, 031101 (2007)]." Review of Scientific Instruments 78, no. 3 (March 2007): 030901. http://dx.doi.org/10.1063/1.2716503.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

La Fontaine, Alexandre, Sandra Piazolo, Patrick Trimby, Limei Yang, and Julie M. Cairney. "Laser-Assisted Atom Probe Tomography of Deformed Minerals: A Zircon Case Study." Microscopy and Microanalysis 23, no. 2 (January 30, 2017): 404–13. http://dx.doi.org/10.1017/s1431927616012745.

Pełny tekst źródła
Streszczenie:
AbstractThe application of atom probe tomography to the study of minerals is a rapidly growing area. Picosecond-pulsed, ultraviolet laser (UV-355 nm) assisted atom probe tomography has been used to analyze trace element mobility within dislocations and low-angle boundaries in plastically deformed specimens of the nonconductive mineral zircon (ZrSiO4), a key material to date the earth’s geological events. Here we discuss important experimental aspects inherent in the atom probe tomography investigation of this important mineral, providing insights into the challenges in atom probe tomography ch
Style APA, Harvard, Vancouver, ISO itp.
30

Vorlaufer, Nora, Jan Josten, Chandra Macauley, Nemanja Martić, Andreas Hutzler, Nicola Taccardi, Karl Mayrhofer, and Peter Felfer. "Atom Probe Tomography of Catalyst Nanoparticles." Microscopy and Microanalysis 28, S1 (July 22, 2022): 742–43. http://dx.doi.org/10.1017/s1431927622003427.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Hono, Kazuhiro, Dierk Raabe, Simon P. Ringer, and David N. Seidman. "Atom probe tomography of metallic nanostructures." MRS Bulletin 41, no. 1 (January 2016): 23–29. http://dx.doi.org/10.1557/mrs.2015.314.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Kelly, Thomas F., David J. Larson, Keith Thompson, Roger L. Alvis, Joseph H. Bunton, Jesse D. Olson, and Brian P. Gorman. "Atom Probe Tomography of Electronic Materials." Annual Review of Materials Research 37, no. 1 (August 2007): 681–727. http://dx.doi.org/10.1146/annurev.matsci.37.052506.084239.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Gault, Baptiste, Shyeh Tjing Loi, Vicente J. Araullo-Peters, Leigh T. Stephenson, Michael P. Moody, Sachin L. Shrestha, Ross K. W. Marceau, Lan Yao, Julie M. Cairney, and Simon P. Ringer. "Dynamic reconstruction for atom probe tomography." Ultramicroscopy 111, no. 11 (November 2011): 1619–24. http://dx.doi.org/10.1016/j.ultramic.2011.08.005.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Vurpillot, F., and C. Oberdorfer. "Modeling Atom Probe Tomography: A review." Ultramicroscopy 159 (December 2015): 202–16. http://dx.doi.org/10.1016/j.ultramic.2014.12.013.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Geiser, BP, DA Reinhard, JH Bunton, TR Payne, KP Rice, Y. Chen, and DJ Larson. "Reconstruction Metrics in Atom Probe Tomography." Microscopy and Microanalysis 25, S2 (August 2019): 336–37. http://dx.doi.org/10.1017/s1431927619002411.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Miller, Michael K., Thomas F. Kelly, Krishna Rajan, and Simon P. Ringer. "The future of atom probe tomography." Materials Today 15, no. 4 (April 2012): 158–65. http://dx.doi.org/10.1016/s1369-7021(12)70069-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Larson, D. J., D. A. Reinhard, T. J. Prosa, D. Olson, D. Lawrence, P. H. Clifton, R. M. Ulfig, et al. "New Applications in Atom Probe Tomography." Microscopy and Microanalysis 18, S2 (July 2012): 926–27. http://dx.doi.org/10.1017/s1431927612006484.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Larson, D. J., J. W. Valley, T. Ushikubo, M. K. Miller, H. Takamizawa, Y. Shimizu, L. M. Gordon, et al. "New Applications in Atom Probe Tomography." Microscopy and Microanalysis 19, S2 (August 2013): 1022–23. http://dx.doi.org/10.1017/s1431927613007101.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Heck, Philipp R., Dieter Isheim, Michael J. Pellin, Andrew M. Davis, Anirudha V. Sumant, Orlando Auciello, Jeffrey W. Elam, et al. "Atom-Probe Tomography of Meteoritic Nanodiamonds." Microscopy and Microanalysis 20, S3 (August 2014): 1676–77. http://dx.doi.org/10.1017/s1431927614010113.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Miller, M. K. "An Introduction to Atom Probe Tomography." Microscopy and Microanalysis 9, S02 (August 2003): 1558–59. http://dx.doi.org/10.1017/s143192760344779x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Stiller, K., L. Viskari, G. Sundell, F. Liu, M. Thuvander, H. O. Andrén, D. J. Larson, T. Prosa, and D. Reinhard. "Atom Probe Tomography of Oxide Scales." Oxidation of Metals 79, no. 3-4 (December 21, 2012): 227–38. http://dx.doi.org/10.1007/s11085-012-9330-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Rigutti, L., B. Bonef, J. Speck, F. Tang, and R. A. Oliver. "Atom probe tomography of nitride semiconductors." Scripta Materialia 148 (April 2018): 75–81. http://dx.doi.org/10.1016/j.scriptamat.2016.12.034.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Rice, Katherine, Yimeng Chen, Robert Ulfig, and Tsuyoshi Onishi. "Fixturing Options for Atom Probe Tomography." Microscopy and Microanalysis 26, S2 (July 30, 2020): 2710–11. http://dx.doi.org/10.1017/s1431927620022515.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Mangelinck, D., F. Panciera, K. Hoummada, M. El Kousseifi, C. Perrin, M. Descoins, and A. Portavoce. "Atom probe tomography for advanced metallization." Microelectronic Engineering 120 (May 2014): 19–33. http://dx.doi.org/10.1016/j.mee.2013.12.018.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Khan, Mansoor Ali, Simon P. Ringer, and Rongkun Zheng. "Atom Probe Tomography on Semiconductor Devices." Advanced Materials Interfaces 3, no. 12 (April 6, 2016): 1500713. http://dx.doi.org/10.1002/admi.201500713.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Felfer, Peter J., Baptiste Gault, Gang Sha, Leigh Stephenson, Simon P. Ringer, and Julie M. Cairney. "A New Approach to the Determination of Concentration Profiles in Atom Probe Tomography." Microscopy and Microanalysis 18, no. 2 (February 3, 2012): 359–64. http://dx.doi.org/10.1017/s1431927611012530.

Pełny tekst źródła
Streszczenie:
AbstractAtom probe tomography (APT) provides three-dimensional analytical imaging of materials with near-atomic resolution using pulsed field evaporation. The processes of field evaporation can cause atoms to be placed at positions in the APT reconstruction that can deviate slightly from their original site in the material. Here, we describe and model one such process—that of preferential retention of solute atoms in multicomponent systems. Based on relative field evaporation probabilities, we calculate the point spread function for the solute atom distribution in the “z,” or in-depth directio
Style APA, Harvard, Vancouver, ISO itp.
47

Vurpillot, Francois, Constantinos Hatzoglou, Bertrand Radiguet, Gerald Da Costa, Fabien Delaroche, and Frederic Danoix. "Enhancing Element Identification by Expectation–Maximization Method in Atom Probe Tomography." Microscopy and Microanalysis 25, no. 2 (February 28, 2019): 367–77. http://dx.doi.org/10.1017/s1431927619000138.

Pełny tekst źródła
Streszczenie:
AbstractThis paper describes an alternative way to assign elemental identity to atoms collected by atom probe tomography (APT). This method is based on Bayesian assignation of label through the expectation–maximization method (well known in data analysis). Assuming the correct shape of mass over charge peaks in mass spectra, the probability of each atom to be labeled as a given element is determined, and is used to enhance data visualization and composition mapping in APT analyses. The method is particularly efficient for small count experiments with a low signal to noise ratio, and can be use
Style APA, Harvard, Vancouver, ISO itp.
48

Kelly, Thomas F., Keith Thompson, Emmanuelle A. Marquis, and David J. Larson. "Atom Probe Tomography Defines Mainstream Microscopy at the Atomic Scale." Microscopy Today 14, no. 4 (July 2006): 34–41. http://dx.doi.org/10.1017/s1551929500050264.

Pełny tekst źródła
Streszczenie:
When making a sculpture, it is the eyes that guide the hands and tools and perceive the outcome. In simple words, “in order to make, you must be able to see.” So too, when making a nanoelectronic device, it is the microscope (eyes) that guides the process equipment (hands and tools) and perceives the outcome. As we emerge into the century of nanotechnology, it is imperative that the eyes on the nanoworld provide an adequate ability to “see.” We have microscopies that resolve 0.02 nm on a surface (scanning tunneling microscope (STM)) or single atoms in a specimen (atom probe tomographs (APT) an
Style APA, Harvard, Vancouver, ISO itp.
49

Schmitz, Guido, Constantin Ene, Ch Lang, and Vitaliy Vovk. "Atom Probe Tomography: Studying Reactions on Top of the Tip." Advances in Science and Technology 46 (October 2006): 126–35. http://dx.doi.org/10.4028/www.scientific.net/ast.46.126.

Pełny tekst źródła
Streszczenie:
Down-scaling is a major principle of modern technology. As a consequence, the stability of many technical devices is controlled by solid state reactions that proceed on the range of a few nanometres only. On such a short length scale even basic aspects of reaction physics as fundamental as e.g. the Ficks laws of diffusion, need to be reconsidered. Only very few dedicated techniques are suitable to study atomic transport and reactions with sufficient accuracy. Among them, the atom probe tomography is exceptional, as it allows the detection and localization of individual atoms with an accuracy o
Style APA, Harvard, Vancouver, ISO itp.
50

Oberdorfer, C., T. Withrow, L. J. Yu, K. Fisher, E. A. Marquis, and W. Windl. "Influence of surface relaxation on solute atoms positioning within atom probe tomography reconstructions." Materials Characterization 146 (December 2018): 324–35. http://dx.doi.org/10.1016/j.matchar.2018.05.014.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!