Gotowa bibliografia na temat „Barley Genetics”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Barley Genetics”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Barley Genetics"
Ren, Xifeng, Yonggang Wang, Songxian Yan, Dongfa Sun i Genlou Sun. "Population genetics and phylogenetic analysis of the vrs1 nucleotide sequence in wild and cultivated barley". Genome 57, nr 4 (kwiecień 2014): 239–44. http://dx.doi.org/10.1139/gen-2014-0039.
Pełny tekst źródłaJana, S., i L. N. Pietrzak. "Comparative assessment of genetic diversity in wild and primitive cultivated barley in a center of diversity." Genetics 119, nr 4 (1.08.1988): 981–90. http://dx.doi.org/10.1093/genetics/119.4.981.
Pełny tekst źródłaNeale, D. B., M. A. Saghai-Maroof, R. W. Allard, Q. Zhang i R. A. Jorgensen. "Chloroplast DNA diversity in populations of wild and cultivated barley." Genetics 120, nr 4 (1.12.1988): 1105–10. http://dx.doi.org/10.1093/genetics/120.4.1105.
Pełny tekst źródłaTsuchiya, T. "Barley Genetics Newsletter". Hereditas 73, nr 1 (12.02.2009): 162. http://dx.doi.org/10.1111/j.1601-5223.1973.tb01079.x.
Pełny tekst źródłaLukina, K. A., O. N. Kovaleva i I. G. Loskutov. "Naked barley: taxonomy, breeding, and prospects of utilization". Vavilov Journal of Genetics and Breeding 26, nr 6 (9.10.2022): 524–36. http://dx.doi.org/10.18699/vjgb-22-64.
Pełny tekst źródłaSreenivasulu, Nese, Andreas Graner i Ulrich Wobus. "Barley Genomics: An Overview". International Journal of Plant Genomics 2008 (13.03.2008): 1–13. http://dx.doi.org/10.1155/2008/486258.
Pełny tekst źródłaRamakrishna, Wusirika, Jorge Dubcovsky, Yong-Jin Park, Carlos Busso, John Emberton, Phillip SanMiguel i Jeffrey L. Bennetzen. "Different Types and Rates of Genome Evolution Detected by Comparative Sequence Analysis of Orthologous Segments From Four Cereal Genomes". Genetics 162, nr 3 (1.11.2002): 1389–400. http://dx.doi.org/10.1093/genetics/162.3.1389.
Pełny tekst źródłaKünzel, Gottfried, Larissa Korzun i Armin Meister. "Cytologically Integrated Physical Restriction Fragment Length Polymorphism Maps for the Barley Genome Based on Translocation Breakpoints". Genetics 154, nr 1 (1.01.2000): 397–412. http://dx.doi.org/10.1093/genetics/154.1.397.
Pełny tekst źródłaCho, Seungho, David F. Garvin i Gary J. Muehlbauer. "Transcriptome Analysis and Physical Mapping of Barley Genes in Wheat–Barley Chromosome Addition Lines". Genetics 172, nr 2 (1.12.2005): 1277–85. http://dx.doi.org/10.1534/genetics.105.049908.
Pełny tekst źródłaKonishi, T., i S. Matsuura. "Geographic differentiation in isozyme genotypes of Himalayan barley (Hordeum vulgare)". Genome 34, nr 5 (1.10.1991): 704–9. http://dx.doi.org/10.1139/g91-108.
Pełny tekst źródłaRozprawy doktorskie na temat "Barley Genetics"
Collins, Nicholas C. "The genetics of barley yellow dwarf virus resistance in barley and rice". Title page, table of contents and summary only, 1996. http://hdl.handle.net/2440/46063.
Pełny tekst źródłaThesis (Ph.D.) -- University of Adelaide, Dept. of Plant Science, 1996
Jenkin, Mandy Jane. "Genetics of boron tolerance in barley /". Adelaide : Thesis (Ph.D.) -- University of Adelaide, Department of Plant Science, 1993. http://web4.library.adelaide.edu.au/theses/09PH/09phj514.pdf.
Pełny tekst źródłaHarvey, Andrew John. "Isolation, characterization and differential expression of Barley B-Glucan Exohydrolase genes". Title page, abstract and table of contents only, 2000. http://web4.library.adelaide.edu.au/theses/09PH/09phh399.pdf.
Pełny tekst źródłaCaldwell, Katherine Selby. "An evaluation of the patterns of nucleotide diversity and linkage disequilibrium at the regional level in Hordeum vulgare /". Title page, table of contents and abstract only, 2004. http://web4.library.adelaide.edu.au/theses/09PH/09phc1471.pdf.
Pełny tekst źródłaJefferies, Stephen P. "Marker assisted backcrossing for gene introgression in barley (Hordeum vulgare L.)". Title page, contents and chapter 1 only, 2000. http://web4.library.adelaide.edu.au/theses/09APSP/09apspj45.pdf.
Pełny tekst źródłaEglinton, Jason Konrad. "Novel alleles from wild barley for breeding malting barley (Hordeum vulgare L.) /". Title page, abstact and table of contents only, 2003. http://web4.library.adelaide.edu.au/theses/09PH/09phe313.pdf.
Pełny tekst źródłaPatil, Vrushali. "Molecular developmental genetics of the barley internode". Thesis, University of Dundee, 2016. https://discovery.dundee.ac.uk/en/studentTheses/a7e7046a-3615-40c4-b678-200299cd0d12.
Pełny tekst źródłaJenkin, Mandy Jane. "Genetics of boron tolerance in barley / by Mandy Jane Jenkin". Thesis, Adelaide Thesis (Ph.D.) -- University of Adelaide, Department of Plant Science, 1993. http://hdl.handle.net/2440/21652.
Pełny tekst źródłaLiu, Shaolin 1968. "Oligonucleotides applied in genomics, bioinformatics and development of molecular markers for rice and barley". Thesis, McGill University, 2004. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=85569.
Pełny tekst źródłaSmith, Ryan Anthony. "Germination and growth responses of Hordeum Vulgare SV13 cultivated as a green fodder crop for African conditions". Thesis, Cape Peninsula University of Technology, 2018. http://hdl.handle.net/20.500.11838/2790.
Pełny tekst źródłaThis study evaluated the effects of 5 different soaking treatments in conjunction with 5 varying irrigation intervals on the germination, growth and nutritional values of seed of Hordeum vulgare Sv13. The 5 different soaking times consisted of 1, 3, 8, 16 and 24 hours. The barley seed was first cleaned and then placed in a vessel containing 500 ml of distilled water with a 20 % solution of sodium hypochlorite (bleach) at room temperature. Thereafter the pre-soaked seeds were transferred to a perforated container, containing no medium and placed into a growing chamber equipped with drip irrigation. The seed was then irrigated with 1245 ml of water at 5 different intervals namely every 2, 4, 8 10 and 12 hours. The temperature of the hydroponic growing room was kept at a constant 23 °C using a hotoperiod of 16-hour day/ 8-hour darkness. The seed was allowed to germinate and grow for a period of 8 days before being harvested. The objectives of this study were to determine the most beneficial combination of soaking treatment in conjunction with the most beneficial irrigation interval on the germination rate of the seed allowing for radicle emergence and coleoptile production. It was also used to determine which combination of treatments was most beneficial to the growth and nutritional values of the seed post-harvest. Another objective was to ascertain the shortest soaking time for application in a small-scale, hydroponic growing unit as well as the frequency of irrigation required to grow seedlings, thereby determining the amount of water required to produce a seedling mat for a small-scale, subsistence farmer, with the emphasis being on water reduction. Each treatment was replicated 10 times and consisted of 500 grams of seed, which when placed into its container measured 2 centimetres in depth, totalling 25 treatments in all. Germination was measured by observing radicle emergence in the first 2 days of the growing period first after a 24-hour cycle and again after 48 hours. The numbers of leaves present at harvest after an 8-day growing period were also counted to determine germination rate of the seeds. Growth was determined by average leaf height as well as the tallest leaf on day 8 of the growing cycle. Root mat expansion was also measured, post-harvest, which was compared to the initial 2 cm planting depth of seed. Wet and dry weights of the plant material were measured post-harvest. Samples of the harvested material were also sent for nitrogen and protein analysis. It was discovered that most of the results favoured a shorter soaking time and an increase in irrigation frequency, bar a few exceptions. Most favoured a pre-soaking time of only 1 hour together with an irrigation frequency of between 2 and 4 hours. This shows that small-scale farmers would be able to reduce the time spent on soaking of their seed. Although the frequency of the irrigation interval remained high further testing would be required to determine if the amount of water applied at each irrigation interval could be reduced and still produce favourable results. It would also remain to be seen if no irrigation during the 8-hour dark photoperiod would have any negative impact on germination, growth and nutritional values of the seedlings.
Książki na temat "Barley Genetics"
ll, Torbjo rn Sa. Genetic variation for recombination in barley. Svalo v: Swedish University of Agricultural Sciences, Dept. of Crop Genetics and Breeding, 1989.
Znajdź pełny tekst źródłaUllrich, Steven E. Barley, production, improvement, and uses. Chichester, West Sussex, UK: Wiley-Blackwell, 2011.
Znajdź pełny tekst źródłaZhang, Guoping. Genetics and Improvement of Barley Malt Quality. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2010.
Znajdź pełny tekst źródłaZhang, Guoping, i Chengdao Li, red. Genetics and Improvement of Barley Malt Quality. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-01279-2.
Pełny tekst źródłaInternational, Barley Genetics Resources Workshop (1991 Helsingborg Sweden). Barley genetic resources: Report of an international barley genetic resources workshop held at Helsingborg Kongresscenter Helsingborg, Sweden, 20-21 July 1991. Rome: International Board for Plant Genetic Resources, 1992.
Znajdź pełny tekst źródłaKhodʹkov, L. E. Golozernye i bezostye i͡a︡chmeni. Leningrad: Izd-vo Leningradskogo universiteta, 1985.
Znajdź pełny tekst źródłaGrant, Bailey L., Thompson B. K i Canada Agriculture Canada, red. Barley register =: Registre des variétés d'orge. Ottawa: Agriculture Canada, 1985.
Znajdź pełny tekst źródłaSaskatchewan), International Oats Conference (5th 1996 University of. V International Oat Conference & VII International Barley Genetics Symposium: Proceedings. Saskatoon: University Extension Press, 1996.
Znajdź pełny tekst źródłaThörn, Eva C. Selective chromosome elimination in barley: The "bulbosum-system" : possibilities and limitations in plant breeding. Svalöf: Swedish University of Agricultural Sciences, Dept. of Plant Breeding Research, 1992.
Znajdź pełny tekst źródłaSveriges lantbruksuniversitet. Institutionen för växtförädling., red. Mutation research in barley. Svalöf: Swedish University of Agricultural Sciences, Dept. of Plant Breeding Research, 1992.
Znajdź pełny tekst źródłaCzęści książek na temat "Barley Genetics"
von Wettstein-Knowles, Penny. "Barley Raincoats: Biosynthesis and Genetics". W Plant Molecular Biology, 305–14. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4615-7598-6_28.
Pełny tekst źródłaEversole, Kellye, Andreas Graner i Nils Stein. "Wheat and Barley Genome Sequencing". W Genetics and Genomics of the Triticeae, 713–42. New York, NY: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-77489-3_24.
Pełny tekst źródłaLangridge, Peter, Yang Qingwen, Dong Chongmei i Ken Chalmers. "From Genome Structure to Pragmatic Breeding of Wheat and Barley". W Stadler Genetics Symposia Series, 197–209. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4615-4235-3_15.
Pełny tekst źródłaLundqvist, U. "Barley Mutants - Diversity, Genetics and Plant Breeding Value". W Current Options for Cereal Improvement, 115–28. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-0893-2_11.
Pełny tekst źródłaBrown, James K. M. "Molecular and Population Genetics of Barley Powdery Mildew". W Advances in Molecular Genetics of Plant-Microbe Interactions, 191–98. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-0177-6_29.
Pełny tekst źródłaKrattinger, Simon, Thomas Wicker i Beat Keller. "Map-Based Cloning of Genes in Triticeae (Wheat and Barley)". W Genetics and Genomics of the Triticeae, 337–57. New York, NY: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-77489-3_12.
Pełny tekst źródłaGenc, Y., G. K. McDonald, Z. Rengel i R. D. Graham. "Genotypic Variation in the Response of Barley to Zinc Deficiency". W Plant Nutrition — Molecular Biology and Genetics, 205–21. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-017-2685-6_24.
Pełny tekst źródłaForster, B. P., R. P. Ellis, A. C. Newton, R. Tuberosa, D. This, A. S. El-Gamal, M. H. Bahri i M. Ben Salem. "Molecular Breeding of Barley for Droughted Low Input Agricultural Conditions". W Plant Nutrition — Molecular Biology and Genetics, 359–63. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-017-2685-6_40.
Pełny tekst źródłaWray, J. L., S. M. Ip, E. Duncanson, A. F. Gilkes i D. W. Kirk. "Biochemistry, Regulation and Genetics of Nitrite Reduction in Barley". W Inorganic Nitrogen in Plants and Microorganisms, 203–9. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-75812-6_31.
Pełny tekst źródłaSmith, Frank W., Daisy H. Cybinski i Anne L. Rae. "Regulation of Expression of Genes Encoding Phosphate Transporters in Barley Roots". W Plant Nutrition — Molecular Biology and Genetics, 145–50. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-017-2685-6_19.
Pełny tekst źródłaStreszczenia konferencji na temat "Barley Genetics"
"The variability of organelle genomes in barley". W Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Novosibirsk ICG SB RAS 2021, 2021. http://dx.doi.org/10.18699/plantgen2021-190.
Pełny tekst źródła"Targeted knockout of the NUD gene in Siberian barley". W Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Novosibirsk ICG SB RAS 2021, 2021. http://dx.doi.org/10.18699/plantgen2021-107.
Pełny tekst źródła"Barley alloplasmic lines – the spectra of peculiar plasmon types". W Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 2019. http://dx.doi.org/10.18699/plantgen2019-175.
Pełny tekst źródła"Molecular genetic methods for assessing drought resistance of spring barley". W Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Novosibirsk ICG SB RAS 2021, 2021. http://dx.doi.org/10.18699/plantgen2021-142.
Pełny tekst źródła"Transcriptomic changes underlying partial albinism in barley nearly isogenic line". W Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 2019. http://dx.doi.org/10.18699/plantgen2019-169.
Pełny tekst źródła"Genetics of resistance of spring barley to the agent Ustilago nuda". W Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Novosibirsk ICG SB RAS 2021, 2021. http://dx.doi.org/10.18699/plantgen2021-017.
Pełny tekst źródła"Generation of haploidy inducers for Cas endonuclease-mediated mutagenesis in barley". W Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Novosibirsk ICG SB RAS 2021, 2021. http://dx.doi.org/10.18699/plantgen2021-178.
Pełny tekst źródła"Comparative characteristics of barley hybrids by the anthocyanins content in grain". W Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Novosibirsk ICG SB RAS 2021, 2021. http://dx.doi.org/10.18699/plantgen2021-114.
Pełny tekst źródła"Targeted modification of regulatory genes associated with barley grain color formation". W Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Novosibirsk ICG SB RAS 2021, 2021. http://dx.doi.org/10.18699/plantgen2021-047.
Pełny tekst źródła"Identification and characterization of a barley gene controlling cuticle wax formation". W Plant Genetics, Genomics, Bioinformatics, and Biotechnology. Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 2019. http://dx.doi.org/10.18699/plantgen2019-061.
Pełny tekst źródłaRaporty organizacyjne na temat "Barley Genetics"
Delmer, Deborah, Nicholas Carpita i Abraham Marcus. Induced Plant Cell Wall Modifications: Use of Plant Cells with Altered Walls to Study Wall Structure, Growth and Potential for Genetic Modification. United States Department of Agriculture, maj 1995. http://dx.doi.org/10.32747/1995.7613021.bard.
Pełny tekst źródłaMawassi, Munir, Baozhong Meng i Lorne Stobbs. Development of Virus Induced Gene Silencing Tools for Functional Genomics in Grapevine. United States Department of Agriculture, lipiec 2013. http://dx.doi.org/10.32747/2013.7613887.bard.
Pełny tekst źródłaAbbo, Shahal, Hongbin Zhang, Clarice Coyne, Amir Sherman, Dan Shtienberg i George J. Vandemark. Winter chickpea; towards a new winter pulse for the semiarid Pacific Northwest and wider adaptation in the Mediterranean basin. United States Department of Agriculture, styczeń 2011. http://dx.doi.org/10.32747/2011.7597909.bard.
Pełny tekst źródłaHorwitz, Benjamin, i Nicole M. Donofrio. Identifying unique and overlapping roles of reactive oxygen species in rice blast and Southern corn leaf blight. United States Department of Agriculture, styczeń 2017. http://dx.doi.org/10.32747/2017.7604290.bard.
Pełny tekst źródłaTel-Zur, Neomi, i Jeffrey J. Doyle. Role of Polyploidy in Vine Cacti Speciation and Crop Domestication. United States Department of Agriculture, styczeń 2012. http://dx.doi.org/10.32747/2012.7697110.bard.
Pełny tekst źródła