Artykuły w czasopismach na temat „Batteries à flux”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Batteries à flux”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Chen, Ming Yi, Richard Yuen, and Jian Wang. "Experimental Study on the Bundle Lithium-Ion Batteries Fire." Materials Science Forum 890 (March 2017): 263–66. http://dx.doi.org/10.4028/www.scientific.net/msf.890.263.
Pełny tekst źródłaRamos-Paja, Carlos A., Fredy E. Hoyos, and John E. Candelo-Becerra. "Constant Luminous Flux Approach for Portable Light-Emitting Diode Lamps Based on the Zero-Average Dynamic Controller." Applied System Innovation 8, no. 3 (2025): 59. https://doi.org/10.3390/asi8030059.
Pełny tekst źródłaAhmedov, B. J. "On a Possibility to Measure Thermo-Electric Power in SNS Structures." Modern Physics Letters B 12, no. 16 (1998): 633–37. http://dx.doi.org/10.1142/s0217984998000743.
Pełny tekst źródłaLi, Zhen Zhe, Yun De Shen, Gui Ying Shen, Mei Qin Li, and Ming Ren. "Parameter Study on Cooling System of Battery for HEV." Advanced Materials Research 538-541 (June 2012): 2038–42. http://dx.doi.org/10.4028/www.scientific.net/amr.538-541.2038.
Pełny tekst źródłaLiu, Yue, Bin Li, Jianhua Liu, Songmei Li, and Shubin Yang. "Pre-planted nucleation seeds for rechargeable metallic lithium anodes." Journal of Materials Chemistry A 5, no. 35 (2017): 18862–69. http://dx.doi.org/10.1039/c7ta04932c.
Pełny tekst źródłaWu, Zhiheng, Yongshang Zhang, Lu Li, et al. "Nitrogen-doped vertical graphene nanosheets by high-flux plasma enhanced chemical vapor deposition as efficient oxygen reduction catalysts for Zn–air batteries." Journal of Materials Chemistry A 8, no. 44 (2020): 23248–56. http://dx.doi.org/10.1039/d0ta07633c.
Pełny tekst źródłaZeising, Samuel, Rebecca Seidl, Angelika Thalmayer, Georg Fischer, and Jens Kirchner. "Low-Frequency Magnetic Localization of Capsule Endoscopes with an Integrated Coil." Engineering Proceedings 6, no. 1 (2021): 38. http://dx.doi.org/10.3390/i3s2021dresden-10146.
Pełny tekst źródłaKhasanshin, R. H., and D. V. Ouvarov. "Determination of threshold values of parameters of electronic irradiation of glass leading to electrostatic discharges." Izvestiâ Akademii nauk SSSR. Seriâ fizičeskaâ 88, no. 4 (2024): 538–48. http://dx.doi.org/10.31857/s0367676524040032.
Pełny tekst źródłaBenavides, Darío, Paúl Arévalo, Luis G. Gonzalez, and José A. Aguado. "Analysis of Different Energy Storage Technologies for Microgrids Energy Management." E3S Web of Conferences 173 (2020): 03004. http://dx.doi.org/10.1051/e3sconf/202017303004.
Pełny tekst źródłaTeshima, Katsuya, Hajime Wagata, and Shuji Oishi. "All-Crystal-State Lithium-Ion Batteries: Innovation Inspired by Novel Flux Coating Method." Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT) 2013, CICMT (2013): 000187–91. http://dx.doi.org/10.4071/cicmt-wp41.
Pełny tekst źródłaShweta, Chand, and K. Awasthi D. "Application of Lithium Battery in Electronic Goods." Global Journal of Research in Engineering & Computer Sciences 3, no. 1 (2023): 15–18. https://doi.org/10.5281/zenodo.7700134.
Pełny tekst źródłaTan, Chun, Matthew D. R. Kok, Sohrab R. Daemi, Daniel J. L. Brett, and Paul R. Shearing. "Three-dimensional image based modelling of transport parameters in lithium–sulfur batteries." Physical Chemistry Chemical Physics 21, no. 8 (2019): 4145–54. http://dx.doi.org/10.1039/c8cp04763d.
Pełny tekst źródłaKim, Chaejeong, Wooyoung Jeong, Hong Rim Shin, Kyu-Nam Jung, and Jong-Won Lee. "Metal–Organic Framework Monoliths for Lithium Metal Batteries with Long Cycle Lifetimes." ECS Meeting Abstracts MA2024-02, no. 7 (2024): 873. https://doi.org/10.1149/ma2024-027873mtgabs.
Pełny tekst źródłaWu, Lisha, Ying Zhang, Ping Shang, Yanfeng Dong, and Zhong-Shuai Wu. "Redistributing Zn ion flux by bifunctional graphitic carbon nitride nanosheets for dendrite-free zinc metal anodes." Journal of Materials Chemistry A 9, no. 48 (2021): 27408–14. http://dx.doi.org/10.1039/d1ta08697a.
Pełny tekst źródłaJeong, Hyung Mo, Donghyoung Kim, Benzhi Wang, Shin Joon Kang, Sunhyeong Kwon, and Byunggon Song. "Regulating and Concentrating Ion-Flux on Anode Materials for Next-Generation Batteries." ECS Meeting Abstracts MA2024-02, no. 6 (2024): 677. https://doi.org/10.1149/ma2024-026677mtgabs.
Pełny tekst źródłaLiu, Borui, Juan F. Torres, Mahdiar Taheri, et al. "Dual‐Ion Flux Management for Stable High Areal Capacity Lithium–Sulfur Batteries." Advanced Energy Materials 12, no. 10 (2022): 2103444. http://dx.doi.org/10.1002/aenm.202103444.
Pełny tekst źródłaCho, Jinil, Yong-keon Ahn, Yong Jun Gong, Seonmi Pyo, Jeeyoung Yoo, and Youn Sang Kim. "An organic–inorganic composite separator for preventing shuttle effect in lithium–sulfur batteries." Sustainable Energy & Fuels 4, no. 6 (2020): 3051–57. http://dx.doi.org/10.1039/d0se00123f.
Pełny tekst źródłaNateghi, A., and M. A. Keip. "A thermo-chemo-mechanically coupled model for cathode particles in lithium–ion batteries." Acta Mechanica 232, no. 8 (2021): 3041–65. http://dx.doi.org/10.1007/s00707-021-02970-1.
Pełny tekst źródłaYubuta, Kunio, Yusuke Mizuno, Nobuyuki Zettsu, et al. "TEM observation for low-temperature grown spinel-type LiMn2O4crystals." Acta Crystallographica Section A Foundations and Advances 70, a1 (2014): C749. http://dx.doi.org/10.1107/s205327331409250x.
Pełny tekst źródłaSharma, Bhamiti, Bing Tan, David Shepard, David Li, Yuhao Liao, and Yang-Tse Cheng. "Multifunctional Zeolite Coated Separators for Improved Performance and Safety of Lithium Metal Batteries." ECS Meeting Abstracts MA2023-01, no. 2 (2023): 549. http://dx.doi.org/10.1149/ma2023-012549mtgabs.
Pełny tekst źródłaKim, Patrick J., Kyungho Kim, and Vilas G. Pol. "Uniform metal-ion flux through interface-modified membrane for highly stable metal batteries." Electrochimica Acta 283 (September 2018): 517–27. http://dx.doi.org/10.1016/j.electacta.2018.06.177.
Pełny tekst źródłaZHAO, LIWEI, JIANGFENG NI, HAIBO WANG, and LIJUN GAO. "FLUX SYNTHESIS OF Na0.44MnO2 NANORIBBONS AND THEIR ELECTROCHEMICAL PROPERTIES FOR Na-ION BATTERIES." Functional Materials Letters 06, no. 02 (2013): 1350012. http://dx.doi.org/10.1142/s1793604713500124.
Pełny tekst źródłaTang, Weiping. "Preparation of Lithium Cobalt Oxide by LiCl-Flux Method for Lithium Rechargeable Batteries." Electrochemical and Solid-State Letters 1, no. 3 (1999): 145. http://dx.doi.org/10.1149/1.1390665.
Pełny tekst źródłaPark, Kyu-Young, Hyungsub Kim, Seongsu Lee, et al. "Thermal structural stability of a multi-component olivine electrode for lithium ion batteries." CrystEngComm 18, no. 39 (2016): 7463–70. http://dx.doi.org/10.1039/c6ce00944a.
Pełny tekst źródłaChi, Ri-Guang, and Seok-Ho Rhi. "Oscillating Heat Pipe Cooling System of Electric Vehicle’s Li-Ion Batteries with Direct Contact Bottom Cooling Mode." Energies 12, no. 9 (2019): 1698. http://dx.doi.org/10.3390/en12091698.
Pełny tekst źródłaZhu, Jie, Junchao Zheng, Guolin Cao, et al. "Flux-free synthesis of single-crystal LiNi0.8Co0.1Mn0.1O2 boosts its electrochemical performance in lithium batteries." Journal of Power Sources 464 (July 2020): 228207. http://dx.doi.org/10.1016/j.jpowsour.2020.228207.
Pełny tekst źródłaGueon, Donghee, and Jung Hoon Yang. "Carboxylic Acid Functionalized Ionic Liquid Electrolyte Additives for Stable Zinc Metal Anodes." ECS Meeting Abstracts MA2024-02, no. 9 (2024): 1349. https://doi.org/10.1149/ma2024-0291349mtgabs.
Pełny tekst źródłaTakeuchi, Esther S., Amy C. Marschilok, and Kenneth J. Takeuchi. "(Invited) Transport Limits for Zinc Aqueous Electrolyte Batteries: Investigation over Multiple Length Scales." ECS Meeting Abstracts MA2024-01, no. 3 (2024): 558. http://dx.doi.org/10.1149/ma2024-013558mtgabs.
Pełny tekst źródłaM., Vishnu, Anooplal B., and Rajesh Baby. "Experimental exploration of nano-phase change material composites for thermal management in Lithium-ion batteries." Energy Storage and Conversion 2, no. 2 (2024): 309. http://dx.doi.org/10.59400/esc.v2i2.309.
Pełny tekst źródłaWang, Haihua, Wei Yuan, Chaoxian Chen, et al. "Artificial Interfacial Layers with Zwitterionic Ion Structure Improves Lithium Symmetric Battery Life and Inhibits Dendrite Growth." Symmetry 17, no. 5 (2025): 652. https://doi.org/10.3390/sym17050652.
Pełny tekst źródłaXu, Zihan, Mei Han, and Jian Zhi. "Ion Flux Regulation in Aqueous Zinc-ion Batteries." Journal of Materials Chemistry A, 2025. https://doi.org/10.1039/d5ta01379h.
Pełny tekst źródłaJu, Zhengyu, Tianrui Zheng, Bowen Zhang, and Guihua Yu. "Interfacial chemistry in multivalent aqueous batteries: fundamentals, challenges, and advances." Chemical Society Reviews, 2024. http://dx.doi.org/10.1039/d4cs00474d.
Pełny tekst źródłaLuo, Zhixuan, Yiming Zhao, Yu Huyan, et al. "Designing Multi‐functional Separators With Regulated Ion Flux and Selectivity for Macrobian Zinc Ion Batteries." Small, December 9, 2024. https://doi.org/10.1002/smll.202410342.
Pełny tekst źródłaZhang, Yilin, Chenyu Wang, Xuan Li, et al. "Coupled ion desolvation and nucleation control for stable zinc anodes enabled by a polyoxometalate-crosslinked nanocellulose separator." Journal of Materials Chemistry A, 2025. https://doi.org/10.1039/d5ta04227e.
Pełny tekst źródłaVillarroel-Sepúlveda, Nicolás, F. A. Asenjo, and P. S. Moya. "Magnetic seed generation by plasma heat flux in accretion disks." Astronomy & Astrophysics, December 3, 2024. https://doi.org/10.1051/0004-6361/202452803.
Pełny tekst źródłaLi, Xin, Yong Lin, Yunyan Fan, et al. "Solid polymer/ceramic electrolyte coating promoting uniform Li flux and LiF-rich interphase for lithium metal batteries." New Journal of Chemistry, 2025. https://doi.org/10.1039/d4nj05234j.
Pełny tekst źródłaWang, Ke, Teng Zhao, Ruixin Lv, et al. "Lithium Metal Batteries Enabled by Ion Flux‐Regulating Coating on Separator." Advanced Functional Materials, June 19, 2025. https://doi.org/10.1002/adfm.202508164.
Pełny tekst źródłaZhou, Chenming, Zhezhong Zhang, Mu Zhang, et al. "Targeted Deflecting Zn2+ Migration Trajectory by Piezomagnetic Effect to Enable Horizontal Zn Deposition." Energy & Environmental Science, 2025. https://doi.org/10.1039/d4ee04115a.
Pełny tekst źródłaYang, Yi, Sa Wang, Yuqing Duan, et al. "Flux Synthesis of Robust Polyimide Covalent Organic Frameworks with High‐Density Redox Sites for Efficient Proton Batteries." Angewandte Chemie International Edition, November 25, 2024. http://dx.doi.org/10.1002/anie.202418394.
Pełny tekst źródłaYang, Yi, Sa Wang, Yuqing Duan, et al. "Flux Synthesis of Robust Polyimide Covalent Organic Frameworks with High‐Density Redox Sites for Efficient Proton Batteries." Angewandte Chemie, November 25, 2024. http://dx.doi.org/10.1002/ange.202418394.
Pełny tekst źródłaZhang, Shuoqing, Ruhong Li, Nan Hu, et al. "Tackling realistic Li+ flux for high-energy lithium metal batteries." Nature Communications 13, no. 1 (2022). http://dx.doi.org/10.1038/s41467-022-33151-w.
Pełny tekst źródłaLu, Wenyi, Yongshuai Liu, Shaochong Cao, et al. "Visual Engineering Achieved with Electronegative Carbon Dots for Highly Efficient Ion Flux Regulation." Advanced Materials, March 30, 2025. https://doi.org/10.1002/adma.202500873.
Pełny tekst źródłaJia, Hao, Chao Zeng, Hyung‐Seok Lim, et al. "Important Role of Ion Flux Regulated by Separators in Lithium Metal Batteries." Advanced Materials, December 25, 2023. http://dx.doi.org/10.1002/adma.202311312.
Pełny tekst źródłaWang, jinguo, fan-gong Kong, zi-rui wang, et al. "Dendrite-Free Zinc Deposition Induced by an Artificial Layer of Strontium Titanate for Stable Zinc Metal Anode." Journal of The Electrochemical Society, June 12, 2023. http://dx.doi.org/10.1149/1945-7111/acdd9e.
Pełny tekst źródłaWang, Haobo, Yutong Wu, Qihong Xie, et al. "An Ionic Sieve‐Integrated Conductive Interfacial Design to Simultaneously Regulate the Zn2+ Flux and Interfacial Resistance for Advancing Zinc‐Ion Batteries." Advanced Functional Materials, November 24, 2024. http://dx.doi.org/10.1002/adfm.202417145.
Pełny tekst źródłaCai, Da‐Qian, Shi‐Xi Zhao, Huan Liu, et al. "Ordered and Expanded Li Ion Channels for Dendrite‐Free and Fast Kinetics Lithium–Sulfur Battery." Advanced Functional Materials, November 24, 2024. http://dx.doi.org/10.1002/adfm.202419165.
Pełny tekst źródłaLi, Rong, Jiaqi Li, Xin Wang, et al. "Surface Design for High Ion Flux Separator in Lithium-Sulfur Batteries." Journal of Colloid and Interface Science, October 2023. http://dx.doi.org/10.1016/j.jcis.2023.10.018.
Pełny tekst źródłaNayak, Bhojkumar, Ritwik Mondal, and Musthafa Ottakam Thotiyl. "Electrostatically Driven Unidirectional Molecular Flux for High Performance Alkaline Flow Batteries." Nanoscale, 2023. http://dx.doi.org/10.1039/d3nr02727a.
Pełny tekst źródłaYing, Hangjun, Pengfei Huang, Zhao Zhang, et al. "Freestanding and Flexible Interfacial Layer Enables Bottom-Up Zn Deposition Toward Dendrite-Free Aqueous Zn-Ion Batteries." Nano-Micro Letters 14, no. 1 (2022). http://dx.doi.org/10.1007/s40820-022-00921-6.
Pełny tekst źródłaHu, Qiang, Jisong Hu, Fei Ma, et al. "Redistributing Zinc‐ion Flux by Work Function Chemistry toward Stabilized and Durable Zn Metal Batteries." Energy & Environmental Science, 2024. http://dx.doi.org/10.1039/d3ee04304e.
Pełny tekst źródła