Gotowa bibliografia na temat „Biomimetics”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Biomimetics”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Biomimetics"
Terrier, Mathias i Emmanuel. "BiomiMETRIC Assistance Tool: A Quantitative Performance Tool for Biomimetic Design". Biomimetics 4, nr 3 (10.07.2019): 49. http://dx.doi.org/10.3390/biomimetics4030049.
Pełny tekst źródłaSpeck, Olga, i Thomas Speck. "Biomimetics and Education in Europe: Challenges, Opportunities, and Variety". Biomimetics 6, nr 3 (4.08.2021): 49. http://dx.doi.org/10.3390/biomimetics6030049.
Pełny tekst źródłaGraeff, Eliot, Nicolas Maranzana i Améziane Aoussat. "Engineers’ and Biologists’ Roles during Biomimetic Design Processes, Towards a Methodological Symbiosis". Proceedings of the Design Society: International Conference on Engineering Design 1, nr 1 (lipiec 2019): 319–28. http://dx.doi.org/10.1017/dsi.2019.35.
Pełny tekst źródłaZhang, Zhijun, Qigan Wang i Shujun Zhang. "Review of Computational Fluid Dynamics Analysis in Biomimetic Applications for Underwater Vehicles". Biomimetics 9, nr 2 (28.01.2024): 79. http://dx.doi.org/10.3390/biomimetics9020079.
Pełny tekst źródłaWommer, Kirsten, i Kristina Wanieck. "Biomimetic Research for Applications Addressing Technical Environmental Protection". Biomimetics 7, nr 4 (28.10.2022): 182. http://dx.doi.org/10.3390/biomimetics7040182.
Pełny tekst źródłaKohsaka, Ryo, Yoshinori Fujihira i Yuta Uchiyama. "Biomimetics for business? Industry perceptions and patent application". Journal of Science and Technology Policy Management 10, nr 3 (2.10.2019): 597–616. http://dx.doi.org/10.1108/jstpm-05-2018-0052.
Pełny tekst źródłaWanieck, Kristina, Leandra Hamann, Marcel Bartz, Eike Uttich, Markus Hollermann, Manfred Drack i Heike Beismann. "Biomimetics Linked to Classical Product Development: An Interdisciplinary Endeavor to Develop a Technical Standard". Biomimetics 7, nr 2 (30.03.2022): 36. http://dx.doi.org/10.3390/biomimetics7020036.
Pełny tekst źródłaBhushan, Bharat. "Nature's Nanotechnology". Mechanical Engineering 134, nr 12 (1.12.2012): 28–32. http://dx.doi.org/10.1115/1.2012-dec-1.
Pełny tekst źródłaUchiyama, Yuta, Eduardo Blanco i Ryo Kohsaka. "Application of Biomimetics to Architectural and Urban Design: A Review across Scales". Sustainability 12, nr 23 (24.11.2020): 9813. http://dx.doi.org/10.3390/su12239813.
Pełny tekst źródłaJatsch, Anne-Sophie, Shoshanah Jacobs, Kirsten Wommer i Kristina Wanieck. "Biomimetics for Sustainable Developments—A Literature Overview of Trends". Biomimetics 8, nr 3 (11.07.2023): 304. http://dx.doi.org/10.3390/biomimetics8030304.
Pełny tekst źródłaRozprawy doktorskie na temat "Biomimetics"
Petrie, Timothy Andrew. "Biomimetic integrin-specific surface to direct osteoblastic function and tissue healing". Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/29628.
Pełny tekst źródłaCommittee Chair: Andres Garcia; Committee Member: Andrew Lyon; Committee Member: Barbara Boyan; Committee Member: Johnna Temenoff; Committee Member: Todd McDevitt. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Evans, Richard. "Carbohydrate biomimetics". Thesis, University of Oxford, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.534195.
Pełny tekst źródłaLi, Xuehe. "Self-assembly, Templation and biomimetics". ScholarWorks@UNO, 2002. http://louisdl.louislibraries.org/u?/NOD,25.
Pełny tekst źródłaTitle from electronic submission form. Vita. "A dissertation ... in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Chemistry"--Dissertation t.p. Includes bibliographical references.
Gong, Jiachang. "Biomimetics and host-guest chemistry". ScholarWorks@UNO, 2004. http://louisdl.louislibraries.org/u?/NOD,186.
Pełny tekst źródłaTitle from electronic submission form. "A dissertation ... in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Chemistry."--Dissertation t.p. Vita. Includes bibliographical references.
Haase, Nicholas Rudy. "The development, characterization, and application of a biomimetic method of enzyme immobilization". Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/45802.
Pełny tekst źródłaWolff, Annalena [Verfasser]. "Biomimetics and functional nanostructures / Annalena Wolff". Bielefeld : Universitätsbibliothek Bielefeld, 2014. http://d-nb.info/1048677117/34.
Pełny tekst źródłaUvieghara, Mathias N. "Paper-based Biochemical and Chemical Amplification Techniques for Bio-detection". Fogler Library, University of Maine, 2007. http://www.library.umaine.edu/theses/pdf/UviegharaMN2007.pdf.
Pełny tekst źródłaVarpness, Zachary Bradley. "Biomimetic synthesis of catalytic materials". Diss., Montana State University, 2007. http://etd.lib.montana.edu/etd/2007/varpness/VarpnessZ0807.pdf.
Pełny tekst źródłaMulcahey, Thomas Ian. "Autonomous cricket biosensors for acoustic localization". Thesis, Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/33833.
Pełny tekst źródłaMontenegro, Rivelino V. D. "Crystallization, biomimetics and semiconducting polymers in confined systems". Phd thesis, Universität Potsdam, 2003. http://opus.kobv.de/ubp/volltexte/2005/76/.
Pełny tekst źródłaKristallisation, Biomimetik und halbleitende Polymere in räumlich begrenzten Systemen:
Öl und Wasser mischen sich nicht, man kann aber aus beiden Flüssigkeiten Emulsionen herstellen, bei denen Tröpfchen der einen Flüssigkeit in der anderen Flüssigkeit vorliegen. Das heißt, es können entweder Öltröpfchen in Wasser oder Wassertröpfchen in Öl erzeugt werden. Aus täglichen Erfahrungen, z.B. beim Kochen weiß man jedoch, dass sich eine Emulsion durch Schütteln oder Rühren herstellen lässt, diese jedoch nicht besonders stabil ist. Mit Hilfe von hohen Scherenergien kann man nun sehr kleine, in ihrer Größe sehr einheitliche und außerdem sehr stabile Tröpfchen von 1/10000 mm erhalten. Eine solche Emulsion wird Miniemulsion genannt.
In der Dissertation wurden nun z.B. Miniemulsionen untersucht, die aus kleinen Wassertröpfchen in einem Öl bestehen. Es konnte gezeigt werden, dass das Wasser in diesen Tröpfchen, also in den räumlich begrenzten Systemen, nicht bei 0 °C, sondern bei -22 °C kristallisierte. Wie lässt sich das erklären? Wenn man einen Eimer Wasser hat, dann bildet sich normalerweise bei 0 °C Eis, da nämlich in dem Wasser einige (manchmal ganz wenige) Keime (z.B. Schutzteilchen, ein Fussel etc.) vorhanden sind, an denen sich die ersten Kristalle bilden. Wenn sich dann einmal ein Kristall gebildet hat, kann das Wasser im gesamten Eimer schnell zu Eis werden. Ultrareines Wasser würde bei -22 °C kristallisieren. Wenn man jetzt die Menge Wasser aus dem Eimer in kleine Tröpfchen bringt, dann hat man eine sehr, sehr große Zahl, nämlich 1017 Tröpfchen, in einem Liter Emulsion vorliegen. Die wenigen Schmutzpartikel verteilen auf sehr wenige Tröpfchen, die anderen Tröpfchen sind ultrarein. Daher kristallisieren sie erst bei -22 °C.
Im Rahmen der Arbeit konnte auch gezeigt werden, dass die Miniemulsionen genutzt werden können, um kleine Gelatine-Partikel, also Nanogummibärchen, herzustellen. Diese Nanogummibärchen quellen bei Erhöhung der Temperatur auf ca. 38 °C an. Das kann ausgenutzt werden, um zum Beispiel Medikamente zunächst in den Partikeln im menschlichen Körper zu transportieren, die Medikamente werden dann an einer gewünschten Stelle freigelassen. In der Arbeit wurde auch gezeigt, dass die Gelatine-Partikel genutzt werden können, um die Natur nachzuahnen (Biomimetik). Innerhalb der Partikel kann nämlich gezielt Knochenmaterial aufgebaut werden kann. Die Gelatine-Knochen-Partikel können dazu genutzt werden, um schwer heilende oder komplizierte Knochenbrüche zu beheben. Gelatine wird nämlich nach einigen Tagen abgebaut, das Knochenmaterial kann in den Knochen eingebaut werden.
LEDs werden heute bereits vielfältig verwendet. LEDs bestehen aus Halbleitern, wie z.B. Silizium. Neuerdings werden dazu auch halbleitende Polymere eingesetzt. Das große Problem bei diesen Materialien ist, dass sie aus Lösungsmitteln aufgebracht werden. Im Rahmen der Doktorarbeit wurde gezeigt, dass der Prozess der Miniemulsionen genutzt werden kann, um umweltfreundlich diese LEDs herzustellen. Man stellt dazu nun wässrige Dispersionen mit den Polymerpartikeln her. Damit hat man nicht nur das Lösungsmittel vermieden, das hat nun noch einen weiteren Vorteil: man kann nämlich diese Dispersion auf sehr einfache Art verdrucken, im einfachsten Fall verwendet man einfach einen handelsüblichen Tintenstrahldrucker.
The colloidal systems are present everywhere in many varieties such as emulsions (liquid droplets dispersed in liquid), aerosols (liquid dispersed in gas), foam (gas in liquid), etc. Among several new methods for the preparation of colloids, the so-called miniemulsion technique has been shown to be one of the most promising. Miniemulsions are defined as stable emulsions consisting of droplets with a size of 50-500 nm by shearing a system containing oil, water, a surfactant, and a highly water insoluble compound, the so-called hydrophobe
1. In the first part of this work, dynamic crystallization and melting experiments are described which were performed in small, stable and narrowly distributed nanodroplets (confined systems) of miniemulsions. Both regular and inverse systems were examined, characterizing, first, the crystallization of hexadecane, secondly, the crystallization of ice. It was shown for both cases that the temperature of crystallization in such droplets is significantly decreased (or the required undercooling is increased) as compared to the bulk material. This was attributed to a very effective suppression of heterogeneous nucleation. It was also found that the required undercooling depends on the nanodroplet size: with decreasing droplet size the undercooling increases.
2. It is shown that the temperature of crystallization of other n-alkanes in nanodroplets is also significantly decreased as compared to the bulk material due to a very effective suppression of heterogeneous nucleation. A very different behavior was detected between odd and even alkanes. In even alkanes, the confinement in small droplets changes the crystal structure from a triclinic (as seen in bulk) to an orthorhombic structure, which is attributed to finite size effects inside the droplets. An intermediate metastable rotator phase is of less relevance for the miniemulsion droplets than in the bulk. For odd alkanes, only a strong temperature shift compared to the bulk system is observed, but no structure change. A triclinic structure is formed both in bulk and in miniemulsion droplets.
3. In the next part of the thesis it is shown how miniemulsions could be successfully applied in the development of materials with potential application in pharmaceutical and medical fields. The production of cross-linked gelatin nanoparticles is feasible. Starting from an inverse miniemulsion, the softness of the particles can be controlled by varying the initial concentration, amount of cross-link agent, time of cross-linking, among other parameters. Such particles show a thermo-reversible effect, e.g. the particles swell in water above 37 °C and shrink below this temperature. Above 37 °C the chains loose the physical cross-linking, however the particles do not loose their integrity, because of the chemical cross-linking. Those particles have potential use as drug carriers, since gelatin is a natural polymer derived from collagen.
4. The cross-linked gelatin nanoparticles have been used for the biomineralization of hydroxyapatite (HAP), a biomineral, which is the major constituent of our bones. The biomineralization of HAP crystals within the gelatin nanoparticles results in a hybrid material, which has potential use as a bone repair material.
5. In the last part of this work we have shown that layers of conjugated semiconducting polymers can be deposited from aqueous dispersion prepared by the miniemulsion process. Dispersions of particles of different conjugated semiconducting polymers such as a ladder-type poly(para-phenylene) and several soluble derivatives of polyfluorene could be prepared with well-controlled particle sizes ranging between 70 - 250 nm. Layers of polymer blends were prepared with controlled lateral dimensions of phase separation on sub-micrometer scales, utilizing either a mixture of single component nanoparticles or nanoparticles containing two polymers. From the results of energy transfer it is demonstrated that blending two polymers in the same particle leads to a higher efficiency due to the better contact between the polymers. Such an effect is of great interest for the fabrication of opto-electronic devices such as light emitting diodes with nanometer size emitting points and solar cells comprising of blends of electron donating and electron accepting polymers.
Książki na temat "Biomimetics"
Mehmet, Sarikaya, i Aksay Ilhan A, red. Biomimetics: Design and processing of materials. Woodbury, N.Y: AIP Press, 1995.
Znajdź pełny tekst źródłaBhushan, Bharat. Biomimetics. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-28284-8.
Pełny tekst źródłaBhushan, Bharat. Biomimetics. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-71676-3.
Pełny tekst źródłaBhushan, Bharat. Biomimetics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-25408-6.
Pełny tekst źródłaRamalingam, Murugan, Xiumei Wang, Guoping Chen, Peter Ma i Fu-Zhai Cui, red. Biomimetics. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118810408.
Pełny tekst źródłaEhrlich, Hermann, red. Extreme Biomimetics. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-45340-8.
Pełny tekst źródłaLiu, Jia. Biomimetics Through Nanoelectronics. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-68609-7.
Pełny tekst źródłaBurrington, James D., i Douglas S. Clark, red. Biocatalysis and Biomimetics. Washington, DC: American Chemical Society, 1989. http://dx.doi.org/10.1021/bk-1989-0392.
Pełny tekst źródłaGruber, Petra. Biomimetics in Architecture. Vienna: Springer Vienna, 2011. http://dx.doi.org/10.1007/978-3-7091-0332-6.
Pełny tekst źródłaPersiani, Sandra. Biomimetics of Motion. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-93079-4.
Pełny tekst źródłaCzęści książek na temat "Biomimetics"
House, Dustin, i Dongqing Li. "Biomimetics". W Encyclopedia of Microfluidics and Nanofluidics, 103–4. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4614-5491-5_85.
Pełny tekst źródłaBhushan, Bharat. "Biomimetics". W Encyclopedia of Nanotechnology, 337–46. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-017-9780-1_171.
Pełny tekst źródłaVallet-Regí, María. "Biomimetics". W Bio-Ceramics with Clinical Applications, 17–22. Chichester, UK: John Wiley & Sons, Ltd, 2014. http://dx.doi.org/10.1002/9781118406748.ch2.
Pełny tekst źródłaHouse, Dustin, i Dongqing Li. "Biomimetics". W Encyclopedia of Microfluidics and Nanofluidics, 1–2. Boston, MA: Springer US, 2014. http://dx.doi.org/10.1007/978-3-642-27758-0_85-3.
Pełny tekst źródłaKheyraddini Mousavi, Arash, Zayd Chad Leseman, Manuel L. B. Palacio, Bharat Bhushan, Scott R. Schricker, Vishnu-Baba Sundaresan, Stephen Andrew Sarles i in. "Biomimetics". W Encyclopedia of Nanotechnology, 290–98. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-90-481-9751-4_171.
Pełny tekst źródłaKhan, Ferdous, i Sheikh Rafi Ahmad. "Biomimetic Polysaccharides and Derivatives for Cartilage Tissue Regeneration". W Biomimetics, 1–22. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118810408.ch1.
Pełny tekst źródłaChen, Guoping, Hongxu Lu i Naoki Kawazoe. "Biomimetic ECM Scaffolds Prepared from Cultured Cells". W Biomimetics, 243–52. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118810408.ch10.
Pełny tekst źródłaSivakumar, Ponnurengam Malliappan, Di Zhou, Tae Il Son i Yoshihiro Ito. "Design and Synthesis of Photoreactive Polymers for Biomedical Applications". W Biomimetics, 253–78. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118810408.ch11.
Pełny tekst źródłaAhadian, Samad, Murugan Ramalingam i Ali Khademhosseini. "The Emerging Applications of Graphene Oxide and Graphene in Tissue Engineering". W Biomimetics, 279–99. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118810408.ch12.
Pełny tekst źródłaCai, Qiang, i Ce Peng. "Biomimetic Preparation and Morphology Control of Mesoporous Silica". W Biomimetics, 301–27. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118810408.ch13.
Pełny tekst źródłaStreszczenia konferencji na temat "Biomimetics"
Rodriguez-Leal, Ernesto, Jian S. Dai i Gordon R. Pennock. "The Duality of Biomimetics and Artiomimetics in the Creative Process of Design". W ASME 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/detc2008-50035.
Pełny tekst źródłaJennings, Alan L., i Raul Ordonez. "Biomimetic learning, not learning biomimetics: A survey of developmental learning". W NAECON 2010 - IEEE National Aerospace and Electronics Conference. IEEE, 2010. http://dx.doi.org/10.1109/naecon.2010.5712917.
Pełny tekst źródłaLim, Chaeguk, Inchae Park i Byungun Yoon. "Technology development tools in biomimetics utilizing TRIZ: Biomimetic-TRIZ matrix". W 2015 Portland International Conference on Management of Engineering and Technology (PICMET). IEEE, 2015. http://dx.doi.org/10.1109/picmet.2015.7273167.
Pełny tekst źródłaItham Mahajan, Rajini. "THE INEVITABLE ORDER: Revisiting the Calibrated Biomimetics of Le Corbusier’s Modulor". W LC2015 - Le Corbusier, 50 years later. Valencia: Universitat Politècnica València, 2015. http://dx.doi.org/10.4995/lc2015.2015.895.
Pełny tekst źródłaMenon, Carlo, i Nicholas Lan. "Biomimetics for Space Engineering". W 57th International Astronautical Congress. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2006. http://dx.doi.org/10.2514/6.iac-06-d3.p.03.
Pełny tekst źródłaSimmons, Wilbur C. "Biomimetics and smart materials". W Far East and Pacific Rim Symposium on Smart Materials, Structures, and MEMS, redaktorzy Alex Hariz, Vijay K. Varadan i Olaf Reinhold. SPIE, 1997. http://dx.doi.org/10.1117/12.293572.
Pełny tekst źródłaDai, Z. D., W. B. Wang, H. Zhang, M. Yu, A. H. Ji, H. Tan, C. Guo, J. Q. Gong i J. R. Sun. "Biomimetics on gecko locomotion". W DESIGN AND NATURE 2008. Southampton, UK: WIT Press, 2008. http://dx.doi.org/10.2495/dn080031.
Pełny tekst źródła"Biomimetics and bionics robotics". W IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society. IEEE, 2013. http://dx.doi.org/10.1109/iecon.2013.6700180.
Pełny tekst źródłaSimmons, Wilbur C. "Biomimetics and smart materials". W Far East and Pacific Rim Symposium on Smart Materials, Structures, and MEMS, redaktorzy Alex Hariz, Vijay K. Varadan i Olaf Reinhold. SPIE, 1997. http://dx.doi.org/10.1117/12.293528.
Pełny tekst źródłaTseng, Wei-Yu, Jefferey S. Fisher, Javier L. Prieto, Kentaro Rinaldi i Abraham P. Lee. "Biomimetics Microfluidic Tactile Sensor Array". W ASME 2008 3rd Frontiers in Biomedical Devices Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/biomed2008-38078.
Pełny tekst źródłaRaporty organizacyjne na temat "Biomimetics"
Tew, Gregory, Meagan Corrigan, Dahui Liu i Richard Scott. Biomimetics for Treating Biofilm-Embedded Infections. Fort Belvoir, VA: Defense Technical Information Center, grudzień 2012. http://dx.doi.org/10.21236/ada581334.
Pełny tekst źródłaMou, Chung-Yuan. Applications of Nanotechnology in Biomimetics and Quantum Computing. Fort Belvoir, VA: Defense Technical Information Center, październik 2007. http://dx.doi.org/10.21236/ada473229.
Pełny tekst źródłaSolomon, Latasha, Yirong Pu i Allyn Hubbard. Acoustic Transient Localization: A Comparative Analysis of the Conventional Time Difference of Arrival Versus Biomimetics. Fort Belvoir, VA: Defense Technical Information Center, listopad 2009. http://dx.doi.org/10.21236/ada512484.
Pełny tekst źródłaMuthukumar, Murugappan. Modeling Biomimetic Mineralization. Fort Belvoir, VA: Defense Technical Information Center, marzec 2010. http://dx.doi.org/10.21236/ada567213.
Pełny tekst źródłaTurner, Kimberly L. Multi-Scale Biomimetic Adhesives. Fort Belvoir, VA: Defense Technical Information Center, luty 2009. http://dx.doi.org/10.21236/ada495360.
Pełny tekst źródłaStone, Morley O. Biomimetic Infrared (IR) Sensors. Fort Belvoir, VA: Defense Technical Information Center, sierpień 2002. http://dx.doi.org/10.21236/ada406041.
Pełny tekst źródłaCranford, Ted W., i Wesley R. Elsberry. Biomimetic Dolphin Sonar Source. Fort Belvoir, VA: Defense Technical Information Center, styczeń 2004. http://dx.doi.org/10.21236/ada422271.
Pełny tekst źródłaGraff, G. L., A. A. Campbell i N. R. Gordon. Biomimetic thin film synthesis. Office of Scientific and Technical Information (OSTI), maj 1995. http://dx.doi.org/10.2172/105133.
Pełny tekst źródłaBalazs, Anna C., George M. Whitesides, C. Jeffrey Brinker, Igor S. Aranson, Paul Chaikin, Zvonimir Dogic, Sharon Glotzer i in. Designing Biomimetic, Dissipative Material Systems. Office of Scientific and Technical Information (OSTI), styczeń 2016. http://dx.doi.org/10.2172/1235400.
Pełny tekst źródłaTew, Gregory N., i Lachelle Arnt. Biomimetic Polymers with Antimicrobial Activity. Fort Belvoir, VA: Defense Technical Information Center, marzec 2003. http://dx.doi.org/10.21236/ada414733.
Pełny tekst źródła