Spis treści
Gotowa bibliografia na temat „Bosonic analytic continuation”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Bosonic analytic continuation”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Bosonic analytic continuation"
Ong, Perkins Jon, i Danilo M. Yanga. "Damping of spin waves in high-Tc superconductors in the spin polaron formulation". International Journal of Modern Physics B 32, nr 15 (18.06.2018): 1850190. http://dx.doi.org/10.1142/s0217979218501904.
Pełny tekst źródłaBRESSLOFF, P. C., J. G. TAYLOR i A. RESTUCCIA. "A FUNCTIONAL LIGHT-CONE GAUGE CONSTRUCTION OF A BOSONIC STRING COMPACTIFIED ON A TORUS". International Journal of Modern Physics A 03, nr 02 (luty 1988): 451–86. http://dx.doi.org/10.1142/s0217751x88000175.
Pełny tekst źródłaNg, K. K. "Bilayered Spin-S Heisenberg Model in Fractional Dimensions". International Journal of Modern Physics B 12, nr 18 (20.07.1998): 1809–12. http://dx.doi.org/10.1142/s0217979298001034.
Pełny tekst źródłaMANDAL, GAUTAM, ANIRVAN M. SENGUPTA i SPENTA R. WADIA. "INTERACTIONS AND SCATTERING IN d = 1 STRING THEORY". Modern Physics Letters A 06, nr 16 (30.05.1991): 1465–77. http://dx.doi.org/10.1142/s0217732391001585.
Pełny tekst źródłaOstrovska, Sofiya. "On the properties of the limit q-Bernstein operator". Studia Scientiarum Mathematicarum Hungarica 48, nr 2 (1.06.2011): 160–79. http://dx.doi.org/10.1556/sscmath.48.2011.2.1164.
Pełny tekst źródłaFeng, Xin, Xu Wang i Yue Zhang. "Research on public emotional polarization and public opinion evolution of OTC and learning during the COVID-19 epidemic: taking the topic of OTC on Zhihu as an example". Library Hi Tech 40, nr 2 (16.12.2021): 286–303. http://dx.doi.org/10.1108/lht-09-2021-0323.
Pełny tekst źródłaNogaki, Kosuke, i Hiroshi Shinaoka. "Bosonic Nevanlinna Analytic Continuation". Journal of the Physical Society of Japan 92, nr 3 (15.03.2023). http://dx.doi.org/10.7566/jpsj.92.035001.
Pełny tekst źródłaNeuhaus, James, Nathan S. Nichols, Debshikha Banerjee, Benjamin Cohen-Stead, Thomas Maier, Adrian Del Maestro i Steven Johnston. "SmoQyDEAC.jl: A differential evolution package for the analytic continuation of imaginary time correlation functions". SciPost Physics Codebases, 12.11.2024. http://dx.doi.org/10.21468/scipostphyscodeb.39.
Pełny tekst źródłaNeuhaus, James, Nathan S. Nichols, Debshikha Banerjee, Benjamin Cohen-Stead, Thomas Maier, Adrian Del Maestro i Steven Johnston. "Codebase release r1.1 for SmoQyDEAC.jl". SciPost Physics Codebases, 12.11.2024. http://dx.doi.org/10.21468/scipostphyscodeb.39-r1.1.
Pełny tekst źródłaPalermo, A., M. Buzzegoli i F. Becattini. "Exact equilibrium distributions in statistical quantum field theory with rotation and acceleration: Dirac field". Journal of High Energy Physics 2021, nr 10 (październik 2021). http://dx.doi.org/10.1007/jhep10(2021)077.
Pełny tekst źródłaRozprawy doktorskie na temat "Bosonic analytic continuation"
Rotella, Francesco. "Theoretical methods for the role of correlations on high-Tc superconductivity". Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASP181.
Pełny tekst źródłaThis thesis includes two projects. In the first one, we develop and bench-mark an A.I. model to solve bosonic analytic continuation problems, that is generating the right optical conductivity starting from the current-current correlation function. Recent work has demonstrated that Neural Network can outperform Maximum Entropy methods for the analytical continuation of noisy Matsubara Green’s function in many-body physics, both in accuracy and computational cost. Here we generalize this approach to the conductivity response functions. A combination of Beta distributions is proposed as way to generate training sets that avoid limitations associated with monotonous flat scenery, as they offer a broad set of qualitatively different training spectra. We find that Neural Networks are particularly efficient at predicting DC conductivity, a notoriously difficult quantity for Maximum Entropy methods. We clarify the procedure to use the model in a thermally agnostic fashion, meaning that a Neural Network trained at a specific temperature could be used at different ones through a rescaling routine. Finally, we propose a general definition of confidence to be associated with the prediction of the optical conductivity profile, a much needed missing tile in the A.I. analytic continuation landscape, and provide some insight on its applicability. The second project focuses on cuprate high temperature superconductors. Recent experimental work has shown a strong anticorrelation between superconducting order parameter and the so called charge transfer gap. This involves both oxygen and copper orbitals and originates from the strong electronic correlation typical of these materials. In particular, a direct measure of these observables and their anti-correlation has been obtained by scanning tunneling microscopy experiments. Taking advantage from the natural modulation of the apical oxygen position on the surface of bi-layered BSCCO, which also modulate these observable in space, the anti-correlation could be validated at different sites of the same material. Using an advanced Dynamical Mean Field Theory method applied to the inhomogeneous Emery-Hubbard model, which takes into account both the copper and the oxygen orbitals of the cuprate planes, we are able to simulate the experimental situation. By using a pseudoinversion extrapolation method, we can show that the anti-correlation is present and strong in this model, though the strong spatial variation reported in experiments does not occur. This calls for a critical re-evaluation of the interpretation of the experimental results within our modeling. We finally discuss these findings in relation with the critical transition temperature, the superconducting order parameter and charge transfer gap of various known cuprate compounds