Artykuły w czasopismach na temat „Boundary layer”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Boundary layer.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Boundary layer”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Bösenberg, Jens, i Holger Linné. "Laser remote sensing of the planetary boundary layer". Meteorologische Zeitschrift 11, nr 4 (30.10.2002): 233–40. http://dx.doi.org/10.1127/0941-2948/2002/0011-0233.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Chlond, Andreas, i Hartmut Grassl. "The atmospheric boundary layer". Meteorologische Zeitschrift 11, nr 4 (30.10.2002): 227. http://dx.doi.org/10.1127/0941-2948/2002/0011-0227.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Holloway, Simon, Hugo Ricketts i Geraint Vaughan. "Boundary layer temperature measurements of a noctual urban boundary layer". EPJ Web of Conferences 176 (2018): 06004. http://dx.doi.org/10.1051/epjconf/201817606004.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Streszczenie:
A low-power lidar system based in Manchester, United Kingdom has been developed to measure temperature profiles in the nocturnal urban boundary layer. The lidar transmitter uses a 355nm diode-pumped solid state Nd:YAG laser and two narrow-band interference filters in the receiver filter out rotational Raman lines that are dependent on temperature. The spectral response of the lidar is calibrated using a monochromator. Temperature profiles measured by the system are calibrated by comparison to co-located radiosondes.
4

Mamtaz, Farhana, Ahammad Hossain i Nusrat Sharmin. "Solution of Boundary Layer and Thermal Boundary Layer Equation". Asian Research Journal of Mathematics 11, nr 4 (19.12.2018): 1–15. http://dx.doi.org/10.9734/arjom/2018/45267.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Kenyon, Kern E. "Curvature Boundary Layer". Physics Essays 16, nr 1 (marzec 2003): 74–85. http://dx.doi.org/10.4006/1.3025569.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Vranková, Andrea, i Milan Palko. "Atmospheric Boundary Layer". Applied Mechanics and Materials 820 (styczeń 2016): 338–44. http://dx.doi.org/10.4028/www.scientific.net/amm.820.338.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Streszczenie:
Atmospheric Boundary Layer (ABL) is the lowest part of the troposphere. The main feature of the Atmospheric Boundary Layer is the turbulent nature of the flow. The thickness of the boundary layer, formed by flowing air friction on the earth’s surface under various conditions move in quite a wide range. ABL is generally defined as being 0.5 km above the surface, although it can extend up to 2 km depending on time and location. The flow properties are most important over the surface of solid objects, which carry out all the reactions between fluid and solid.
7

Müller, Bernhard M. "Boundary‐layer microphone". Journal of the Acoustical Society of America 96, nr 5 (listopad 1994): 3206. http://dx.doi.org/10.1121/1.411273.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Piau, J. M. "Viscoplastic boundary layer". Journal of Non-Newtonian Fluid Mechanics 102, nr 2 (luty 2002): 193–218. http://dx.doi.org/10.1016/s0377-0257(01)00178-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Fernholz, H. H. "Boundary Layer Theory". European Journal of Mechanics - B/Fluids 20, nr 1 (styczeń 2001): 155–57. http://dx.doi.org/10.1016/s0997-7546(00)01101-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Cha, S. S., R. K. Ahluwalia i K. H. Im. "Boundary layer nucleation". International Journal of Heat and Mass Transfer 32, nr 5 (maj 1989): 825–35. http://dx.doi.org/10.1016/0017-9310(89)90231-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Bahl, Ravi. "Boundary-layer blowing". AIAA Journal 23, nr 1 (styczeń 1985): 157–58. http://dx.doi.org/10.2514/3.8887.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Koizumi, David H. "Boundary layer microphone". Journal of the Acoustical Society of America 113, nr 2 (2003): 683. http://dx.doi.org/10.1121/1.1560240.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Schmidt, Axel, i Michael Nickel. "Boundary layer adapter". Journal of the Acoustical Society of America 128, nr 4 (2010): 2252. http://dx.doi.org/10.1121/1.3500761.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Garratt, J. R. "Boundary layer climates". Earth-Science Reviews 27, nr 3 (maj 1990): 265. http://dx.doi.org/10.1016/0012-8252(90)90005-g.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Holtslag, Bert. "Preface: GEWEX Atmospheric Boundary-layer Study (GABLS) on Stable Boundary Layers". Boundary-Layer Meteorology 118, nr 2 (luty 2006): 243–46. http://dx.doi.org/10.1007/s10546-005-9008-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Donnelly, M. J., O. K. Rediniotis, S. A. Ragab i D. P. Telionis. "The Interaction of Rolling Vortices With a Turbulent Boundary Layer". Journal of Fluids Engineering 117, nr 4 (1.12.1995): 564–70. http://dx.doi.org/10.1115/1.2817302.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Streszczenie:
Laser-Doppler velocimetry is employed to measure the periodic field created by releasing spanwise vortices in a turbulent boundary layer. Phase-averaged vorticity and turbulence level contours are estimated and presented. It is found that vortices with diameter of the order of the boundary layer quickly diffuse and disappear while their turbulent kinetic energy spreads uniformly across the entire boundary layer. Larger vortices have a considerably longer life span and in turn feed more vorticity into the boundary layer.
17

Fabian, Peter, Bernhard Rappenglück, Andreas Stohl, Herbert Werner, Martin Winterhalter, Hans Schlager, Paul Stock i in. "Boundary layer photochemistry during a total solar eclipse". Meteorologische Zeitschrift 10, nr 3 (1.05.2001): 187–92. http://dx.doi.org/10.1127/0941-2948/2001/0010-0187.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Carpenter, D. L., i J. Lemaire. "The Plasmasphere Boundary Layer". Annales Geophysicae 22, nr 12 (22.12.2004): 4291–98. http://dx.doi.org/10.5194/angeo-22-4291-2004.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Streszczenie:
Abstract. As an inner magnetospheric phenomenon the plasmapause region is of interest for a number of reasons, one being the occurrence there of geophysically important interactions between the plasmas of the hot plasma sheet and of the cool plasmasphere. There is a need for a conceptual framework within which to examine and discuss these interactions and their consequences, and we therefore suggest that the plasmapause region be called the Plasmasphere Boundary Layer, or PBL. Such a term has been slow to emerge because of the complexity and variability of the plasma populations that can exist near the plasmapause and because of the variety of criteria used to identify the plasmapause in experimental data. Furthermore, and quite importantly in our view, a substantial obstacle to the consideration of the plasmapause region as a boundary layer has been the longstanding tendency of textbooks on space physics to limit introductory material on the plasmapause phenomenon to zeroth order descriptions in terms of ideal MHD theory, thus implying that the plasmasphere is relatively well understood. A textbook may introduce the concept of shielding of the inner magnetosphere from perturbing convection electric fields, but attention is not usually paid to the variety of physical processes reported to occur in the PBL, such as heating, instabilities, and fast longitudinal flows, processes which must play roles in plasmasphere dynamics in concert with the flow regimes associated with the major dynamo sources of electric fields. We believe that through the use of the PBL concept in future textbook discussions of the plasmasphere and in scientific communications, much progress can be made on longstanding questions about the physics involved in the formation of the plasmapause and in the cycles of erosion and recovery of the plasmasphere. Key words. Magnetospheric physics (plasmasphere; plasma convection; MHD waves and instabilities)
19

Iamandi, Constantin, Andrei Georgescu i Cristian Erbasu. "Atmospheric Boundary Layer Change". International Journal of Fluid Mechanics Research 29, nr 3-4 (2002): 5. http://dx.doi.org/10.1615/interjfluidmechres.v29.i3-4.170.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Vranková, Andrea, i Milan Palko. "Atmospheric Boundary Layer Modelling". Applied Mechanics and Materials 820 (styczeń 2016): 351–58. http://dx.doi.org/10.4028/www.scientific.net/amm.820.351.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Streszczenie:
The aim of the paper was to define the input options over the boundary layer, as the entrance boundary conditions for simulation in ANSYS. The boundary layer is designed for use in external aerodynamics of buildings (part of the urban structure) for selected sites occurring in the territory of the Slovak Republic.
21

Donner, L. J. "The atmospheric boundary layer". Eos, Transactions American Geophysical Union 76, nr 17 (1995): 177. http://dx.doi.org/10.1029/95eo00101.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Hiraoka, H., M. Ohashi, Susumu Kurita, Manabu Kanda, Takashi Karasudani, Hiromasa Ueda, Yuji Ohya i Takanori Uchida. "TC4 Atmospheric Boundary Layer". Wind Engineers, JAWE 2006, nr 108 (2006): 693–708. http://dx.doi.org/10.5359/jawe.2006.693.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

BLOTTNER, F. G. "Chemical Nonequilibrium Boundary Layer". Journal of Spacecraft and Rockets 40, nr 5 (wrzesień 2003): 810–18. http://dx.doi.org/10.2514/2.6907.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Swain, Mark R., i Hubert Gallée. "Antarctic Boundary Layer Seeing". Publications of the Astronomical Society of the Pacific 118, nr 846 (sierpień 2006): 1190–97. http://dx.doi.org/10.1086/507153.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Anderson, John D. "Ludwig Prandtl’s Boundary Layer". Physics Today 58, nr 12 (grudzień 2005): 42–48. http://dx.doi.org/10.1063/1.2169443.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Kerschen, E. J. "Boundary Layer Receptivity Theory". Applied Mechanics Reviews 43, nr 5S (1.05.1990): S152—S157. http://dx.doi.org/10.1115/1.3120795.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Streszczenie:
The receptivity mechanisms by which free-stream disturbances generate instability waves in laminar boundary layers are discussed. Free-stream disturbances have wavelengths which are generally much longer than those of instability waves. Hence, the transfer of energy from the free-stream disturbance to the instability wave requires a wavelength conversion mechanism. Recent analyses using asymptotic methods have shown that the wavelength conversion takes place in regions of the boundary layer where the mean flow adjusts on a short streamwise length scale. This paper reviews recent progress in the theoretical understanding of these phenomena.
27

Bridges, Thomas J., i Philip J. Morris. "Boundary layer stability calculations". Physics of Fluids 30, nr 11 (1987): 3351. http://dx.doi.org/10.1063/1.866467.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Esplin, G. J. "Boundary Layer Emission Monitoring". JAPCA 38, nr 9 (wrzesień 1988): 1158–61. http://dx.doi.org/10.1080/08940630.1988.10466465.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Mahrt, L. "Nocturnal Boundary-Layer Regimes". Boundary-Layer Meteorology 88, nr 2 (sierpień 1998): 255–78. http://dx.doi.org/10.1023/a:1001171313493.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Trowbridge, John H., i Steven J. Lentz. "The Bottom Boundary Layer". Annual Review of Marine Science 10, nr 1 (3.01.2018): 397–420. http://dx.doi.org/10.1146/annurev-marine-121916-063351.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Arav, Nahum, i Mitchell C. Begelman. "Radiation-viscous boundary layer". Astrophysical Journal 401 (grudzień 1992): 125. http://dx.doi.org/10.1086/172045.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Cheskidov, Alexey. "Turbulent boundary layer equations". Comptes Rendus Mathematique 334, nr 5 (styczeń 2002): 423–27. http://dx.doi.org/10.1016/s1631-073x(02)02275-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

BOTTARO, ALESSANDRO. "A ‘receptive’ boundary layer". Journal of Fluid Mechanics 646 (8.03.2010): 1–4. http://dx.doi.org/10.1017/s0022112009994228.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Streszczenie:
Receptivity is the process which describes how environmental disturbances (such as gusts, acoustic waves or wall roughness) are filtered by a boundary layer and turned into downstream-growing waves. It is closely related to the identification of initial conditions for the disturbances and requires knowledge of the characteristics of the specific external forcing field. Without such a knowledge, it makes sense to focus on worst case scenarios and search for those initial states which maximize the disturbance amplitude at a given downstream position, and hence to identify upper bounds on growth rates, which will be useful in predicting the transition to turbulence. This philosophical approach has been taken by Tempelmann, Hanifi & Henningson (J. Fluid Mech., 2010, vol. 646, pp. 5–37) in a remarkably complete parametric study of ‘optimal disturbances’ for a model of the flow over a swept wing; they pinpoint the crucial importance both of the spatial variation of the flow and of non-modal disturbances, even when the flow is ‘supercritical’ and hence subject to classical ‘normal mode’ instabilities.
34

Bénech, B. "The atmospheric boundary layer". Atmospheric Research 29, nr 3-4 (maj 1993): 286–87. http://dx.doi.org/10.1016/0169-8095(93)90017-i.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Durand, Pierre. "Atmospheric boundary layer flows". Atmospheric Research 41, nr 2 (lipiec 1996): 177–78. http://dx.doi.org/10.1016/0169-8095(95)00045-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

King, J. C. "The atmospheric boundary layer". Dynamics of Atmospheres and Oceans 18, nr 1-2 (czerwiec 1993): 115–16. http://dx.doi.org/10.1016/0377-0265(93)90006-s.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

De Keyser, J., M. W. Dunlop, C. J. Owen, B. U. Ö. Sonnerup, S. E. Haaland, A. Vaivads, G. Paschmann, R. Lundin i L. Rezeau. "Magnetopause and Boundary Layer". Space Science Reviews 118, nr 1-4 (czerwiec 2005): 231–320. http://dx.doi.org/10.1007/s11214-005-3834-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Simpson, R. L. "Turbulent Boundary-Layer Separation". Annual Review of Fluid Mechanics 21, nr 1 (styczeń 1989): 205–32. http://dx.doi.org/10.1146/annurev.fl.21.010189.001225.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Wu, Xiaohua, Parviz Moin i Jean-Pierre Hickey. "Boundary layer bypass transition". Physics of Fluids 26, nr 9 (wrzesień 2014): 091104. http://dx.doi.org/10.1063/1.4893454.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Xu, Qin, i Wei Gu. "Semigeostrophic Frontal Boundary Layer". Boundary-Layer Meteorology 104, nr 1 (lipiec 2002): 99–110. http://dx.doi.org/10.1023/a:1015565624074.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Businger, J. A. "The atmospheric boundary layer". Earth-Science Reviews 34, nr 4 (sierpień 1993): 283–84. http://dx.doi.org/10.1016/0012-8252(93)90069-j.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Hobbs, S. E. "The atmospheric boundary layer". Journal of Atmospheric and Terrestrial Physics 57, nr 3 (marzec 1995): 322. http://dx.doi.org/10.1016/0021-9169(95)90026-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Ostermeyer, Georg-Peter, Thomas Vietor, Michael Müller, David Inkermann, Johannes Otto i Hendrik Lembeck. "The Boundary Layer Machine". PAMM 17, nr 1 (grudzień 2017): 159–60. http://dx.doi.org/10.1002/pamm.201710049.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Mahrt, L. "Boundary-layer moisture regimes". Quarterly Journal of the Royal Meteorological Society 117, nr 497 (styczeń 1991): 151–76. http://dx.doi.org/10.1002/qj.49711749708.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Smith, Roger K., i Michael T. Montgomery. "Hurricane boundary-layer theory". Quarterly Journal of the Royal Meteorological Society 136, nr 652 (październik 2010): 1665–70. http://dx.doi.org/10.1002/qj.679.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Kuntz, D. W., V. A. Amatucci i A. L. Addy. "Turbulent boundary-layer properties downstream of the shock-wave/boundary-layer interaction". AIAA Journal 25, nr 5 (maj 1987): 668–75. http://dx.doi.org/10.2514/3.9681.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

S. S. PARASNIS, M. K. KULKARNI i J. S. PILLAI. "Simulation of boundary layer parameters using one dimensional atmospheric boundary layer model". Journal of Agrometeorology 3, nr 1-2 (1.09.2001): 261–66. http://dx.doi.org/10.54386/jam.v3i1-2.411.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Manisha Patel, Hema Surati i M. G. Timol. "Extension of Blasius Newtonian Boundary Layer to Blasius Non-Newtonian Boundary Layer". Mathematical Journal of Interdisciplinary Sciences 9, nr 2 (8.06.2021): 35–41. http://dx.doi.org/10.15415/mjis.2021.92004.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Streszczenie:
Blasius equation is very well known and it aries in many boundary layer problems of fluid dynamics. In this present article, the Blasius boundary layer is extended by transforming the stress strain term from Newtonian to non-Newtonian. The extension of Blasius boundary layer is discussed using some non-newtonian fluid models like, Power-law model, Sisko model and Prandtl model. The Generalised governing partial differential equations for Blasius boundary layer for all above three models are transformed into the non-linear ordinary differewntial equations using the one parameter deductive group theory technique. The obtained similarity solutions are then solved numerically. The graphical presentation is also explained for the same. It concludes that velocity increases more rapidly when fluid index is moving from shear thickninhg to shear thininhg fluid.MSC 2020 No.: 76A05, 76D10, 76M99
49

Peridier, Vallorie J., F. T. Smith i J. D. A. Walker. "Vortex-induced boundary-layer separation. Part 2. Unsteady interacting boundary-layer theory". Journal of Fluid Mechanics 232, nr -1 (listopad 1991): 133. http://dx.doi.org/10.1017/s0022112091003658.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Angevine, Wayne M., Allen B. White i S. K. Avery. "Boundary-layer depth and entrainment zone characterization with a boundary-layer profiler". Boundary-Layer Meteorology 68, nr 4 (marzec 1994): 375–85. http://dx.doi.org/10.1007/bf00706797.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Do bibliografii