Artykuły w czasopismach na temat „Brain signal acquisition”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Brain signal acquisition”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Shelishiyah, R., M. Bharani Dharan, T. Kishore Kumar, R. Musaraf, and Thiyam Deepa Beeta. "Signal Processing for Hybrid BCI Signals." Journal of Physics: Conference Series 2318, no. 1 (2022): 012007. http://dx.doi.org/10.1088/1742-6596/2318/1/012007.
Pełny tekst źródłaWang, Jiu Hui, and Qiang Ji. "Research on Signal Acquisition Based on Wireless Sensor for Foot Compressive Characteristics on Basketball Movement." Applied Mechanics and Materials 483 (December 2013): 401–4. http://dx.doi.org/10.4028/www.scientific.net/amm.483.401.
Pełny tekst źródłaYuan, Lixue, Yinyan Fan, Quanxi Gan, and Huibin Feng. "Clinical Diagnosis of Psychiatry Based on Electroencephalography." Journal of Medical Imaging and Health Informatics 11, no. 3 (2021): 955–63. http://dx.doi.org/10.1166/jmihi.2021.3338.
Pełny tekst źródłaEdison, Rizki Edmi, Rohmadi Rohmadi, Sra Harke Pratama, Muhammad Fathul Ihsan, Almusfi Saputra, and Warsito Purwo Taruno. "Design of Brain Activity Measurement for Brain ECVT Data Acquisition System." International Journal of Innovative Research in Medical Science 6, no. 10 (2021): 630–34. http://dx.doi.org/10.23958/ijirms/vol06-i10/1223.
Pełny tekst źródłaWang, Shinmin, Ovid J. L. Tzeng, and Richard N. Aslin. "Predictive brain signals mediate association between shared reading and expressive vocabulary in infants." PLOS ONE 17, no. 8 (2022): e0272438. http://dx.doi.org/10.1371/journal.pone.0272438.
Pełny tekst źródłaLin, Jzau Sgeng, and Sun Ming Huang. "An FPGA-Based Brain-Computer Interface for Wireless Electric Wheelchairs." Applied Mechanics and Materials 284-287 (January 2013): 1616–21. http://dx.doi.org/10.4028/www.scientific.net/amm.284-287.1616.
Pełny tekst źródłaRanjandish, Reza, and Alexandre Schmid. "A Review of Microelectronic Systems and Circuit Techniques for Electrical Neural Recording Aimed at Closed-Loop Epilepsy Control." Sensors 20, no. 19 (2020): 5716. http://dx.doi.org/10.3390/s20195716.
Pełny tekst źródłaPerman, William H., Mokhtar H. Gado, Kenneth B. Larson, and Joel S. Perlmutter. "Simultaneous MR Acquisition of Arterial and Brain Signal-Time Curves." Magnetic Resonance in Medicine 28, no. 1 (1992): 74–83. http://dx.doi.org/10.1002/mrm.1910280108.
Pełny tekst źródłaChenane, Kathia, Youcef Touati, Larbi Boubchir, and Boubaker Daachi. "Neural Net-Based Approach to EEG Signal Acquisition and Classification in BCI Applications." Computers 8, no. 4 (2019): 87. http://dx.doi.org/10.3390/computers8040087.
Pełny tekst źródłaVajravelu, Ashok, Muhammad Mahadi Bin Abdul Jamil, Mohd Helmy Bin Abd Wahab, et al. "Nanocomposite-Based Electrode Structures for EEG Signal Acquisition." Crystals 12, no. 11 (2022): 1526. http://dx.doi.org/10.3390/cryst12111526.
Pełny tekst źródłaFerrari, Rosana, Aldo Ivan Cespedes Arce, Mariza Pires de Melo, and Ernane Jose Xavier Costa. "Noninvasive method to assess the electrical brain activity from rats." Ciência Rural 43, no. 10 (2013): 1838–42. http://dx.doi.org/10.1590/s0103-84782013005000117.
Pełny tekst źródłaAach, T., H. Witte, and T. M. Lehmann. "Sensor, Signal and Image Informatics." Yearbook of Medical Informatics 15, no. 01 (2006): 57–67. http://dx.doi.org/10.1055/s-0038-1638479.
Pełny tekst źródłaOrban, Mostafa, Mahmoud Elsamanty, Kai Guo, Senhao Zhang, and Hongbo Yang. "A Review of Brain Activity and EEG-Based Brain–Computer Interfaces for Rehabilitation Application." Bioengineering 9, no. 12 (2022): 768. http://dx.doi.org/10.3390/bioengineering9120768.
Pełny tekst źródłaAbdulwahab, Samaa S., Hussain K. Khleaf, and Manal H. Jassim. "A Survey in Implementation and Applications of Electroencephalograph (EEG)-Based Brain-Computer Interface." Engineering and Technology Journal 39, no. 7 (2021): 1117–32. http://dx.doi.org/10.30684/etj.v39i7.1854.
Pełny tekst źródłaGopalakrishnaiah, Shubratha Koralagundi, Kevin Joseph, and Ulrich G. Hofmann. "Microfluidic drive for flexible brain implants." Current Directions in Biomedical Engineering 3, no. 2 (2017): 675–78. http://dx.doi.org/10.1515/cdbme-2017-0142.
Pełny tekst źródłaYarmish, Gail, and Michael L. Lipton. "Functional Magnetic Resonance Imaging: From Acquisition to Application." Einstein Journal of Biology and Medicine 20, no. 1 (2016): 2. http://dx.doi.org/10.23861/ejbm200320103.
Pełny tekst źródłaQiao, Xiao Yan, and Jia Hui Peng. "P300 Feature Extraction of Visual and Auditory Evoked EEG Signal." Applied Mechanics and Materials 490-491 (January 2014): 1374–77. http://dx.doi.org/10.4028/www.scientific.net/amm.490-491.1374.
Pełny tekst źródłaTong, Peiwen, Hui Xu, Yi Sun, Yongzhou Wang, Wei Wang, and Jiwei Li. "Electroencephalogram signal analysis with 1T1R arrays toward high-efficiency brain computer interface." AIP Advances 12, no. 12 (2022): 125108. http://dx.doi.org/10.1063/5.0117159.
Pełny tekst źródłaJurgielewicz, Paweł, Tomasz Fiutowski, Ewa Kublik, et al. "Modular Data Acquisition System for Recording Activity and Electrical Stimulation of Brain Tissue Using Dedicated Electronics." Sensors 21, no. 13 (2021): 4423. http://dx.doi.org/10.3390/s21134423.
Pełny tekst źródłaBahr, Andreas, Lait Abu Saleh, Dietmar Schroeder, and Wolfgang H. Krautschneider. "High speed digital interfacing for a neural data acquisition system." Current Directions in Biomedical Engineering 2, no. 1 (2016): 87–90. http://dx.doi.org/10.1515/cdbme-2016-0022.
Pełny tekst źródłaKarimi-Bidhendi, Alireza, Omid Malekzadeh-Arasteh, Mao-Cheng Lee, et al. "CMOS Ultralow Power Brain Signal Acquisition Front-Ends: Design and Human Testing." IEEE Transactions on Biomedical Circuits and Systems 11, no. 5 (2017): 1111–22. http://dx.doi.org/10.1109/tbcas.2017.2723607.
Pełny tekst źródłaKasper, Lars, Maria Engel, Christoph Barmet, et al. "Rapid anatomical brain imaging using spiral acquisition and an expanded signal model." NeuroImage 168 (March 2018): 88–100. http://dx.doi.org/10.1016/j.neuroimage.2017.07.062.
Pełny tekst źródłaEnglert, Robert, Fabienne Rupp, Frank Kirchhoff, Klaus Peter Koch, and Michael Schweigmann. "Technical characterization of an 8 or 16 channel recording system to acquire electrocorticograms of mice." Current Directions in Biomedical Engineering 3, no. 2 (2017): 595–98. http://dx.doi.org/10.1515/cdbme-2017-0124.
Pełny tekst źródłaTong, Yunjie, Kimberly P. Lindsey, and Blaise deB Frederick. "Partitioning of Physiological Noise Signals in the Brain with Concurrent Near-Infrared Spectroscopy and fMRI." Journal of Cerebral Blood Flow & Metabolism 31, no. 12 (2011): 2352–62. http://dx.doi.org/10.1038/jcbfm.2011.100.
Pełny tekst źródłaStevenazzi, Lorenzo, Andrea Baschirotto, Giorgio Zanotto, Elia Arturo Vallicelli, and Marcello De Matteis. "Noise Power Minimization in CMOS Brain-Chip Interfaces." Bioengineering 9, no. 2 (2022): 42. http://dx.doi.org/10.3390/bioengineering9020042.
Pełny tekst źródłaRe, Rebecca, Ileana Pirovano, Davide Contini, et al. "Reliable Fast (20 Hz) Acquisition Rate by a TD fNIRS Device: Brain Resting-State Oscillation Studies." Sensors 23, no. 1 (2022): 196. http://dx.doi.org/10.3390/s23010196.
Pełny tekst źródłaLee, Do-Wan, Chul-Woong Woo, Dong-Cheol Woo, Jeong Kon Kim, Kyung Won Kim, and Dong-Hoon Lee. "Regional Mapping of Brain Glutamate Distributions Using Glutamate-Weighted Chemical Exchange Saturation Transfer Imaging." Diagnostics 10, no. 8 (2020): 571. http://dx.doi.org/10.3390/diagnostics10080571.
Pełny tekst źródłaXu, Bao Lei, Yun Fa Fu, Gang Shi, et al. "Comparison of Optical and Concentration Feature Used for fNIRS-Based BCI System Using HMM." Applied Mechanics and Materials 385-386 (August 2013): 1443–48. http://dx.doi.org/10.4028/www.scientific.net/amm.385-386.1443.
Pełny tekst źródłaChang, Yuwei. "Enhancement of Human Feeling via AI-based BCI: A Survey." Highlights in Science, Engineering and Technology 36 (March 21, 2023): 633–37. http://dx.doi.org/10.54097/hset.v36i.5748.
Pełny tekst źródłaLiu, Huawei, Adam W. Autry, Peder E. Z. Larson, Duan Xu, and Yan Li. "Atlas-Based Adaptive Hadamard-Encoded MR Spectroscopic Imaging at 3T." Tomography 9, no. 5 (2023): 1592–602. http://dx.doi.org/10.3390/tomography9050127.
Pełny tekst źródłaChaddad, Ahmad, Yihang Wu, Reem Kateb, and Ahmed Bouridane. "Electroencephalography Signal Processing: A Comprehensive Review and Analysis of Methods and Techniques." Sensors 23, no. 14 (2023): 6434. http://dx.doi.org/10.3390/s23146434.
Pełny tekst źródłaChanu, Oinam Robita, R. Kalpana, B. Soorya, R. Santhosh, and V. Karthik Raj. "Development of a Hardware Circuit for Real-Time Acquisition of Brain Activity Using NI myDAQ." Journal of Circuits, Systems and Computers 29, no. 10 (2020): 2050170. http://dx.doi.org/10.1142/s0218126620501704.
Pełny tekst źródłaMartínez-Villaseñor, Lourdes, and Hiram Ponce. "A concise review on sensor signal acquisition and transformation applied to human activity recognition and human–robot interaction." International Journal of Distributed Sensor Networks 15, no. 6 (2019): 155014771985398. http://dx.doi.org/10.1177/1550147719853987.
Pełny tekst źródłaGao, Xiang, Gesangzeren Fnu, and Xianshu Wan. "Development of the Electroencephalograph-based Brain Computer Interface System." Journal of Physics: Conference Series 2078, no. 1 (2021): 012079. http://dx.doi.org/10.1088/1742-6596/2078/1/012079.
Pełny tekst źródłaQing, Zengyu, Zongxing Lu, Yingjie Cai, and Jing Wang. "Elements Influencing sEMG-Based Gesture Decoding: Muscle Fatigue, Forearm Angle and Acquisition Time." Sensors 21, no. 22 (2021): 7713. http://dx.doi.org/10.3390/s21227713.
Pełny tekst źródłaPARK, HYUNG-MIN, JONG-HWAN LEE, TAESU KIM, et al. "MODELING AUDITORY PATHWAY FOR INTELLIGENT INFORMATION ACQUISITION." International Journal of Information Acquisition 01, no. 04 (2004): 345–56. http://dx.doi.org/10.1142/s0219878904000367.
Pełny tekst źródłaMoreno Escobar, Jesús Jaime, Oswaldo Morales Matamoros, Ricardo Tejeida Padilla, et al. "Biomedical Signal Acquisition Using Sensors under the Paradigm of Parallel Computing." Sensors 20, no. 23 (2020): 6991. http://dx.doi.org/10.3390/s20236991.
Pełny tekst źródłaMascia, Antonello, Riccardo Collu, Andrea Spanu, Matteo Fraschini, Massimo Barbaro, and Piero Cosseddu. "Wearable System Based on Ultra-Thin Parylene C Tattoo Electrodes for EEG Recording." Sensors 23, no. 2 (2023): 766. http://dx.doi.org/10.3390/s23020766.
Pełny tekst źródłaZhang, Yu Xi, Wen Gui Fan, and Jin Ping Sun. "Compressed Sensing Based Neural Signal Processing and Performance Analysis." Applied Mechanics and Materials 513-517 (February 2014): 1595–99. http://dx.doi.org/10.4028/www.scientific.net/amm.513-517.1595.
Pełny tekst źródłaBrowarska, Natalia, Aleksandra Kawala-Sterniuk, Jaroslaw Zygarlicki, et al. "Comparison of Smoothing Filters’ Influence on Quality of Data Recorded with the Emotiv EPOC Flex Brain–Computer Interface Headset during Audio Stimulation." Brain Sciences 11, no. 1 (2021): 98. http://dx.doi.org/10.3390/brainsci11010098.
Pełny tekst źródłaVidaurre, Carmen, Tilmann H. Sander, and Alois Schlögl. "BioSig: The Free and Open Source Software Library for Biomedical Signal Processing." Computational Intelligence and Neuroscience 2011 (2011): 1–12. http://dx.doi.org/10.1155/2011/935364.
Pełny tekst źródłaRama Raju, Venkateshwarla, Kavitha Rani Balmuri, Konda Srinivas, and G. Madhukar. "MER Signal Acquisition of STN-DBS Biomarkers in Parkinson`s: A machine learning auto regression approach." IP Indian Journal of Neurosciences 7, no. 3 (2021): 224–30. http://dx.doi.org/10.18231/j.ijn.2021.040.
Pełny tekst źródłaMa, Tengfei, Wentian Chen, Xin Li, Yuting Xia, Xinhua Zhu, and Sailing He. "fNIRS Signal Classification Based on Deep Learning in Rock-Paper-Scissors Imagery Task." Applied Sciences 11, no. 11 (2021): 4922. http://dx.doi.org/10.3390/app11114922.
Pełny tekst źródłaBhagawati, Amlan Jyoti, and Riku Chutia. "Design of Single Channel Portable EEG Signal Acquisition System for Brain Computer Interface Application." International journal of Biomedical Engineering and Science 3, no. 1 (2016): 37–44. http://dx.doi.org/10.5121/ijbes.2016.3103.
Pełny tekst źródłaNallet, Caroline, and Judit Gervain. "Neurodevelopmental Preparedness for Language in the Neonatal Brain." Annual Review of Developmental Psychology 3, no. 1 (2021): 41–58. http://dx.doi.org/10.1146/annurev-devpsych-050620-025732.
Pełny tekst źródłaZhi, Chunxiang. "A Brain-Myoelectric Signal-Based Approach to Hand Rehabilitation in Stroke." Scholars Journal of Engineering and Technology 11, no. 06 (2023): 139–46. http://dx.doi.org/10.36347/sjet.2023.v11i06.003.
Pełny tekst źródłaDimitrov, Georgi P., Galina Panayotova, Boyan Jekov, et al. "Algorithms for Classification of Signals Derived From Human Brain." International Journal of Circuits, Systems and Signal Processing 15 (September 20, 2021): 1521–26. http://dx.doi.org/10.46300/9106.2021.15.164.
Pełny tekst źródłaJin, Zhaoyang, Ling Xia, Minming Zhang, and Yiping P. Du. "Background-Suppressed MR Venography of the Brain Using Magnitude Data: A High-Pass Filtering Approach." Computational and Mathematical Methods in Medicine 2014 (2014): 1–9. http://dx.doi.org/10.1155/2014/812785.
Pełny tekst źródłaSudha Kumari, Lekshmy, and Abbas Z. Kouzani. "A Miniaturized Closed-Loop Optogenetic Brain Stimulation Device." Electronics 11, no. 10 (2022): 1591. http://dx.doi.org/10.3390/electronics11101591.
Pełny tekst źródłaSAFAIE, J., R. GREBE, H. ABRISHAMI MOGHADDAM, and F. WALLOIS. "WIRELESS DISTRIBUTED ACQUISITION SYSTEM FOR NEAR INFRARED SPECTROSCOPY – WDA-NIRS." Journal of Innovative Optical Health Sciences 06, no. 03 (2013): 1350019. http://dx.doi.org/10.1142/s1793545813500193.
Pełny tekst źródła