Artykuły w czasopismach na temat „Capacitive Energy Storage (CES)”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Capacitive Energy Storage (CES)”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Sandeep, Dhundhara *1 Pradeep Kumar 2. Deepak Lakra 3. "TRANSIENT PERFORMANCE ANALYSIS OF CPSS BASED POWER SYSTEM WITH THE PRESENCE ENERGY STORAGE DEVICES." INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY 6, no. 8 (2017): 154–63. https://doi.org/10.5281/zenodo.839153.
Pełny tekst źródłaBolyukh, V. F. "EXCITATION OF A PULSE ELECTROMECHANICAL CONVERTER OF ELECTRODYNAMIC TYPE FROM A TWO-SECTION CAPACITOR ENERGY STORAGE." Tekhnichna Elektrodynamika 2021, no. 2 (2021): 58–66. http://dx.doi.org/10.15407/techned2021.02.058.
Pełny tekst źródłaDjalal, Muhammad Ruswandi, Muhammad Yunus, Andi Imran, and Herlambang Setiadi. "Capacitive Energy Storage (CES) Optimization For Load Frequency Control in Micro Hydro Power Plant Using Imperialist Competitive Algorithm (ICA)." EMITTER International Journal of Engineering Technology 5, no. 2 (2018): 279–97. http://dx.doi.org/10.24003/emitter.v5i2.195.
Pełny tekst źródłaЩерба, А. А., and Н. І. Супруновська. "REGULATION OF THE CHARGING CIRCUIT CHARACTERISTICS OF CAPACITIVE ENERGY STORAGE BY CHANGING ITS INITIAL VOLTAGE DURING APERIODIC CHARGING FROM A DC VOLTAGE SOURCE." Praci Institutu elektrodinamiki Nacionalanoi akademii nauk Ukraini 2024, no. 68 (2024): 5–12. http://dx.doi.org/10.15407/publishing2024.68.005.
Pełny tekst źródłaSuprunovska, N. І., D. V. Vinnychenko, and V. V. Mykhailenko. "INFLUENCE OF THE INITIAL VOLTAGE OF THE CAPACITIVE ENERGY STORAGE IN ELECTRICAL DISCHARGE INSTALLATIONS ON THE ELECTRICAL CHARACTERISTICS OF ITS OSCILLATORY CHARGE." Tekhnichna Elektrodynamika 2024, no. 6 (2024): 8–14. http://dx.doi.org/10.15407/techned2024.06.008.
Pełny tekst źródłaMansur, Mansur, and Muhammad Ruswandi Djalal. "Using Particle Swarm Optimization for Power System Stabilizer and energy storage in the SMIB system under load shedding conditions." SINERGI 27, no. 3 (2023): 423. http://dx.doi.org/10.22441/sinergi.2023.3.013.
Pełny tekst źródłaDjalal, Muhammad Ruswandi, and Nasrun Kadir. "Optimal design of energy storage for load frequency control in micro hydro power plant using Bat Algorithm." SINERGI 26, no. 1 (2022): 7. http://dx.doi.org/10.22441/sinergi.2022.1.002.
Pełny tekst źródłaAnshoruddin, Ilham, Machrus Ali, Rukslin Rukslin, and Hidayatul Nurohmah. "Desain Kontrol Pembangkit Listrik Tenaga Pikohidro Menggunakan PID-CES Berbasis Firefly Algorithm." Jurnal FORTECH 5, no. 2 (2024): 89–94. http://dx.doi.org/10.56795/fortech.v5i2.5205.
Pełny tekst źródłaKalyan, Ch Naga Sai, Pasala Gopi, Priyanka Joshi, T. Himabindu, and Mohit Bajaj. "Fruit Fly Algorithm Optimised Degree of Freedom Controller for the Dynamical Stability of the Renewable Energy Penetrated Multi Area Power System." E3S Web of Conferences 564 (2024): 01001. http://dx.doi.org/10.1051/e3sconf/202456401001.
Pełny tekst źródłaShcherba, A. A., and N. I. Suprunovska. "FORMATION OF BIPOLAR PULSE CURRENTS IN THE LOAD OF CAPACITIVE ENERGY STORAGES OF ELECTRIC DISCHARGE INSTALLATIONS." Tekhnichna Elektrodynamika 2022, no. 5 (2022): 3–7. http://dx.doi.org/10.15407/techned2022.05.003.
Pełny tekst źródłaV., F. Bolyukh, and S. Schukin I. "EXCITATION WITH A SERIES OF PULSES OF A LINEAR PULSE ELECTRODYNAMIC TYPE CONVERTER OPERATING IN POWER AND HIGH-SPEED MODES." Electrical engineering & electromechanics, no. 4 (August 21, 2020): 3–11. https://doi.org/10.20998/2074-272X.2020.4.01.
Pełny tekst źródłaBolyukh, V. F., and I. S. Shchukin. "INFLUENCE OF AN EXCITATION SOURCE ON THE POWER INDICATORS OF A LINEAR PULSE ELECTROMECHANICAL CONVERTER OF INDUCTION TYPE." Tekhnichna Elektrodynamika 2021, no. 3 (2021): 28–36. http://dx.doi.org/10.15407/techned2021.03.028.
Pełny tekst źródłaLi, Liying, Guiyu Jin, Jian Shen, et al. "Carbon Aerogels: Synthesis, Modification, and Multifunctional Applications." Gels 11, no. 7 (2025): 548. https://doi.org/10.3390/gels11070548.
Pełny tekst źródłaLiu, Qichen, Kangkang Ge, Xiaoyan Wu, Zhiwei Zhu, Yu Zhu, and Hong Bi. "Preparation of Carbon Dots@r-GO Nanocomposite with an Enhanced Pseudo-Capacitance." Molecules 28, no. 2 (2023): 541. http://dx.doi.org/10.3390/molecules28020541.
Pełny tekst źródłaSharma, Deepesh, and Naresh Kumar Yadav. "Lion Algorithm with Levy Update: Load frequency controlling scheme for two-area interconnected multi-source power system." Transactions of the Institute of Measurement and Control 41, no. 14 (2019): 4084–99. http://dx.doi.org/10.1177/0142331219848033.
Pełny tekst źródłaShcherba, A. A., D. V. Vinnychenko, and N. I. Suprunovska. "SCIENTIFIC CONCEPT FOR THE CREATION OF HIGH-VOLTAGE ELECTRICAL SYSTEMS OF A RESONANCE TYPE WITH HIGH-SPEED CONTROL AND PARAMETRIC STABILIZATION OF LOAD MODES." Tekhnichna Elektrodynamika 2024, no. 2 (2024): 30–41. http://dx.doi.org/10.15407/techned2024.02.030.
Pełny tekst źródłaM., I. Baranov, G. Buriakovskyi S., and V. Kniaziev V. "POWERFUL HIGH-CURRENT GENERATOR OF MICROSECOND VOLTAGE PULSES WITH VOLTAGE AMPLITUDE UP TO ±2 MV AND CURRENT AMPLITUDE UP TO ±150 kA WITH ELECTRIC ENERGY STORED IN CAPACITORS UP TO 1 MJ." Electrical engineering & electromechanics, no. 5 (October 27, 2020): 50–57. https://doi.org/10.20998/2074-272X.2020.5.08.
Pełny tekst źródłaArnaoutakis, Georgios E., Gudrun Kocher-Oberlehner, and Dimitris Al Katsaprakakis. "Criteria-Based Model of Hybrid Photovoltaic–Wind Energy System with Micro-Compressed Air Energy Storage." Mathematics 11, no. 2 (2023): 391. http://dx.doi.org/10.3390/math11020391.
Pełny tekst źródłaBorzenko, Andrey, Carine Edder, Lev Mourokh, and Pavel Lazarev. "Rylene Dielectrophores for Capacitive Energy Storage." Materials Sciences and Applications 09, no. 06 (2018): 534–41. http://dx.doi.org/10.4236/msa.2018.96038.
Pełny tekst źródłaFridman, B. E., Baoming Li, V. A. Belyakov, et al. "A 1-MJ capacitive energy storage." Instruments and Experimental Techniques 54, no. 5 (2011): 695–98. http://dx.doi.org/10.1134/s0020441211040208.
Pełny tekst źródłaMa, Xue-Jing, and Wei-Bin Zhang. "Tungsten Nitride for Capacitive Energy Storage." ChemistrySelect 2, no. 28 (2017): 8726–30. http://dx.doi.org/10.1002/slct.201702007.
Pełny tekst źródłaSulym, A., and P. Khozia. "MANAGEMENT STRATEGIES FOR ENERGY PROCESSES IN ELECTRIC ROLLING STOCK WITH ON-BOARD ENERGY STORAGE DEVICES." Collection of scientific works of the State University of Infrastructure and Technologies series "Transport Systems and Technologies" 1, no. 38 (2021): 63–79. http://dx.doi.org/10.32703/2617-9040-2021-38-63-6.
Pełny tekst źródłaKuptsov, Daniil V., and Regina T. Khazieva. "ANALYSIS OF CIRCUIT SOLUTIONS AND WAYS TO INCREASE ENERGY EFFICIENCY." ELECTRICAL AND DATA PROCESSING FACILITIES AND SYSTEMS 19, no. 2 (2023): 73–79. http://dx.doi.org/10.17122/1999-5458-2023-19-2-73-79.
Pełny tekst źródłaMaleev, R. A., N. V. Mychka, and A. N. Gulin. "Engine electric starter system with capacitive energy storage." Izvestiya MGTU MAMI 7, no. 2-1 (2013): 139–41. http://dx.doi.org/10.17816/2074-0530-68228.
Pełny tekst źródłaChauhan, Narendra Pal Singh, Sapana Jadoun, Bharatraj Singh Rathore, Mahmood Barani, and Payam Zarrintaj. "Redox polymers for capacitive energy storage applications." Journal of Energy Storage 43 (November 2021): 103218. http://dx.doi.org/10.1016/j.est.2021.103218.
Pełny tekst źródłaShao, Hui, Yih-Chyng Wu, Zifeng Lin, Pierre-Louis Taberna, and Patrice Simon. "Nanoporous carbon for electrochemical capacitive energy storage." Chemical Society Reviews 49, no. 10 (2020): 3005–39. http://dx.doi.org/10.1039/d0cs00059k.
Pełny tekst źródłaVatamanu, Jenel, and Dmitry Bedrov. "Capacitive Energy Storage: Current and Future Challenges." Journal of Physical Chemistry Letters 6, no. 18 (2015): 3594–609. http://dx.doi.org/10.1021/acs.jpclett.5b01199.
Pełny tekst źródłaZhai, Yunpu, Yuqian Dou, Dongyuan Zhao, Pasquale F. Fulvio, Richard T. Mayes, and Sheng Dai. "Carbon Materials for Chemical Capacitive Energy Storage." Advanced Materials 23, no. 42 (2011): 4828–50. http://dx.doi.org/10.1002/adma.201100984.
Pełny tekst źródłaVasilevich, V. P., and M. V. Zbyshinskaya. "Shape and Measurement Monitoring of Inrush Current Characteristics of a Battery-Capacitive Energy Storage Device with Two-Channel Digital Oscilloscope." Devices and Methods of Measurements 12, no. 4 (2021): 286–91. http://dx.doi.org/10.21122/2220-9506-2021-12-4-286-291.
Pełny tekst źródłaMaleyev, R. A., N. V. Mychka, A. N. Gulin, and Y. A. Kuznetsova. "Parameters of engine’s electrical starting system with alternative supply sources." Izvestiya MGTU MAMI 8, no. 3-1 (2014): 44–47. http://dx.doi.org/10.17816/2074-0530-67663.
Pełny tekst źródłaSulym, Andrey, Pavlo Khozia, A. Fomin, and Oleksandr Bahrov. "Management of Energy Exchange Process on Metro Rolling Stock with On-Board Capacitive Energy Storage." Problems of the Regional Energetics, no. 1(65) (January 2025): 49–63. https://doi.org/10.52254/1857-0070.2025.1-65.04.
Pełny tekst źródłaWojcieszak, Paweł, and Ziemowit Malecha. "Cryogenic energy storage system coupled with packed-bed cold storage." E3S Web of Conferences 44 (2018): 00190. http://dx.doi.org/10.1051/e3sconf/20184400190.
Pełny tekst źródłaMALEEV, R. ,., S. M. ZUEV, A. M. FIRONOV, N. A. VOLCHKOV, and A. A. SKVORTSOV. "THE STARTING PROCESSES OF A CAR ENGINE USING CAPACITIVE ENERGY STORAGES." Periódico Tchê Química 16, no. 33 (2019): 877–88. http://dx.doi.org/10.52571/ptq.v16.n33.2019.892_periodico33_pgs_877_888.pdf.
Pełny tekst źródłaShi, Kaiyuan, and Igor Zhitomirsky. "Supercapacitor devices for energy storage and capacitive dye removal from aqueous solutions." RSC Advances 5, no. 1 (2015): 320–27. http://dx.doi.org/10.1039/c4ra12635a.
Pełny tekst źródłaLi, He, Yao Zhou, Yang Liu, Li Li, Yi Liu, and Qing Wang. "Dielectric polymers for high-temperature capacitive energy storage." Chemical Society Reviews 50, no. 11 (2021): 6369–400. http://dx.doi.org/10.1039/d0cs00765j.
Pełny tekst źródłaGuo, Xianwei, Xiangpeng Fang, Ya Mao, Zhaoxiang Wang, Feng Wu, and Liquan Chen. "Capacitive Energy Storage on Fe/Li3PO4 Grain Boundaries." Journal of Physical Chemistry C 115, no. 9 (2011): 3803–8. http://dx.doi.org/10.1021/jp111015j.
Pełny tekst źródłaSimon, P., and Y. Gogotsi. "Capacitive Energy Storage in Nanostructured Carbon–Electrolyte Systems." Accounts of Chemical Research 46, no. 5 (2012): 1094–103. http://dx.doi.org/10.1021/ar200306b.
Pełny tekst źródłaKoseki, K. "Capacitive energy storage and recovery for synchrotron magnets." Review of Scientific Instruments 85, no. 6 (2014): 063304. http://dx.doi.org/10.1063/1.4884649.
Pełny tekst źródłaTripathy, S. C. "Improved load-frequency control with capacitive energy storage." Energy Conversion and Management 38, no. 6 (1997): 551–62. http://dx.doi.org/10.1016/s0196-8904(96)00064-7.
Pełny tekst źródłaRuan, Chang-Qing, Zhaohui Wang, Jonas Lindh, and Maria Strømme. "Carbonized cellulose beads for efficient capacitive energy storage." Cellulose 25, no. 6 (2018): 3545–56. http://dx.doi.org/10.1007/s10570-018-1811-6.
Pełny tekst źródłaRamazanov, R. F., B. E. Fridman, K. S. Kharcheva, O. V. Komarov, and R. A. Serebrov. "Conceptual design of 2 MJ capacitive energy storage." Defence Technology 14, no. 5 (2018): 622–27. http://dx.doi.org/10.1016/j.dt.2018.07.020.
Pełny tekst źródłaWang, Chaojun, Shengli Zhai, Ziwen Yuan, et al. "Drying graphene hydrogel fibers for capacitive energy storage." Carbon 164 (August 2020): 100–110. http://dx.doi.org/10.1016/j.carbon.2020.03.053.
Pełny tekst źródłaBoota, M., K. B. Hatzell, M. Alhabeb, E. C. Kumbur, and Y. Gogotsi. "Graphene-containing flowable electrodes for capacitive energy storage." Carbon 92 (October 2015): 142–49. http://dx.doi.org/10.1016/j.carbon.2015.04.020.
Pełny tekst źródłaHerrmann, Sven, Nihan Aydemir, Florian Nägele, et al. "Enhanced Capacitive Energy Storage in Polyoxometalate-Doped Polypyrrole." Advanced Functional Materials 27, no. 25 (2017): 1700881. http://dx.doi.org/10.1002/adfm.201700881.
Pełny tekst źródłaLi, He, Feihua Liu, Baoyan Fan, Ding Ai, Zongren Peng, and Qing Wang. "Nanostructured Ferroelectric-Polymer Composites for Capacitive Energy Storage." Small Methods 2, no. 6 (2018): 1700399. http://dx.doi.org/10.1002/smtd.201700399.
Pełny tekst źródłaChen, Jie, Yao Zhou, Xingyi Huang, et al. "Ladderphane copolymers for high-temperature capacitive energy storage." Nature 615, no. 7950 (2023): 62–66. http://dx.doi.org/10.1038/s41586-022-05671-4.
Pełny tekst źródłaPrabhune, Prajakta, Yigitcan Comlek, Abhishek Shandilya, et al. "Design of Polymer Nanodielectrics for Capacitive Energy Storage." Nanomaterials 13, no. 17 (2023): 2394. http://dx.doi.org/10.3390/nano13172394.
Pełny tekst źródłaLiu, Yajing, Yang Zhang, Jing Wang, et al. "Ultrahigh capacitive energy storage through dendritic nanopolar design." Science 388, no. 6743 (2025): 211–16. https://doi.org/10.1126/science.adt2703.
Pełny tekst źródłaChugunov, David. "TESTING OF START-UP MODES SYNCHRONOUS MOTOR WITH ADDITIONAL ELEMENTS IN THE CIRCLE OF AROUSAL." Collection of scholarly papers of Dniprovsk State Technical University (Technical Sciences) 2, no. 45 (2024): 117–24. https://doi.org/10.31319/2519-2884.45.2024.13.
Pełny tekst źródłaRaab, Matthias, and Geoffrey O’Brien. "Carbon capture and storage’s role within Australia’s energy transition: necessary, safe, and reliable." APPEA Journal 63, no. 2 (2023): S419—S422. http://dx.doi.org/10.1071/aj22042.
Pełny tekst źródła