Artykuły w czasopismach na temat „Capture de CO₂”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Capture de CO₂”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Green, N. S., C. E. Early, L. K. Beard, and K. T. Wilkins. "Multiple captures of fulvous harvest mice (Reithrodontomys fulvescens) and northern pygmy mice (Baiomys taylori): evidence for short-term co-traveling." Canadian Journal of Zoology 90, no. 3 (2012): 313–19. http://dx.doi.org/10.1139/z11-137.
Pełny tekst źródłaRoxanne, Z. Pinsky* B.S.E Dr. Piyush Sabharwall Lynn Wendt M.S. &. Dr. Anne M. Gaffney. "ENERGY INPUT AND PROCESS FLOW FOR CARBON CAPTURE AND STORAGE." INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY 8, no. 7 (2019): 244–54. https://doi.org/10.5281/zenodo.3352141.
Pełny tekst źródłaAresta, Michele, Angela Dibenedetto, and Antonella Angelini. "The use of solar energy can enhance the conversion of carbon dioxide into energy-rich products: stepping towards artificial photosynthesis." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 371, no. 1996 (2013): 20120111. http://dx.doi.org/10.1098/rsta.2012.0111.
Pełny tekst źródłaXiao, Yurou Celine, Siyu Sun, Yong Zhao, et al. "Reactive Capture of CO2 via Amino Acid." ECS Meeting Abstracts MA2024-02, no. 62 (2024): 4247. https://doi.org/10.1149/ma2024-02624247mtgabs.
Pełny tekst źródłaRoussanaly, Simon, and Rahul Anantharaman. "Cost-optimal CO 2 capture ratio for membrane-based capture from different CO 2 sources." Chemical Engineering Journal 327 (November 2017): 618–28. http://dx.doi.org/10.1016/j.cej.2017.06.082.
Pełny tekst źródłaSaragih, Harriman Samuel, Togar Simatupang, and Yos Sunitiyoso. "From co-discovery to co-capture: co-innovation in themusic business." International Journal of Innovation Science 11, no. 4 (2019): 600–617. http://dx.doi.org/10.1108/ijis-07-2019-0068.
Pełny tekst źródłaLeverick, Graham, and Betar M. Gallant. "Electrochemical Reduction of Amine-Captured CO2 in Aqueous Solutions." ECS Meeting Abstracts MA2023-01, no. 26 (2023): 1719. http://dx.doi.org/10.1149/ma2023-01261719mtgabs.
Pełny tekst źródłaRamanan, G., and Gordon R. Freeman. "Electron thermalization distance distribution in liquid carbon monoxide: electron capture." Canadian Journal of Chemistry 66, no. 5 (1988): 1304–12. http://dx.doi.org/10.1139/v88-212.
Pełny tekst źródłaKazepidis, Panagiotis, Panos Seferlis, and Athanasios Papadopoulos. "Energy Recovery Strategies in CO2 Compression Using an Integrated Supercritical Rankine Cycle." Chemical Engineering Transactions 114 (December 27, 2024): 559–64. https://doi.org/10.3303/CET24114094.
Pełny tekst źródłaGomez-Garcia, J. Francisco, and Heriberto Pfeiffer. "Structural and CO2capture analyses of the Li1+xFeO2(0 ≤ x ≤ 0.3) system: effect of different physicochemical conditions." RSC Advances 6, no. 113 (2016): 112040–49. http://dx.doi.org/10.1039/c6ra23329e.
Pełny tekst źródłaWang, Tao, Kun Ge, Jun Liu, and Meng Xiang Fang. "A Thermodynamic Analysis of the Fuel Synthesis System with CO2 Direct Captured from Atmosphere." Advanced Materials Research 960-961 (June 2014): 308–15. http://dx.doi.org/10.4028/www.scientific.net/amr.960-961.308.
Pełny tekst źródłaTuğrul Erdem, R. "Innovative technologies in the cement industry." Cement Wapno Beton 26, no. 5 (2021): 444–51. http://dx.doi.org/10.32047/cwb.2021.26.5.7.
Pełny tekst źródłaKothandaraman, Jotheeswari, Alain Goeppert, Miklos Czaun, George A. Olah, and G. K. Surya Prakash. "CO2capture by amines in aqueous media and its subsequent conversion to formate with reusable ruthenium and iron catalysts." Green Chemistry 18, no. 21 (2016): 5831–38. http://dx.doi.org/10.1039/c6gc01165a.
Pełny tekst źródłaChan, Hao Xian Malcolm, Eng Hwa Yap, and Jee Hou Ho. "Overview of Axial Compression Technology for Direct Capture of CO2." Advanced Materials Research 744 (August 2013): 392–95. http://dx.doi.org/10.4028/www.scientific.net/amr.744.392.
Pełny tekst źródłaDeng, Liyuan, and Hanne Kvamsdal. "CO 2 capture: Challenges and opportunities." Green Energy & Environment 1, no. 3 (2016): 179. http://dx.doi.org/10.1016/j.gee.2016.12.002.
Pełny tekst źródłaReis Machado, Ana S., and Manuel Nunes da Ponte. "CO 2 capture and electrochemical conversion." Current Opinion in Green and Sustainable Chemistry 11 (June 2018): 86–90. http://dx.doi.org/10.1016/j.cogsc.2018.05.009.
Pełny tekst źródłaXiao, Yurou Celine, Christine M. Gabardo, Shijie Liu, et al. "Integrated Capture and Electrochemical Conversion of CO2 into CO." ECS Meeting Abstracts MA2023-02, no. 47 (2023): 2390. http://dx.doi.org/10.1149/ma2023-02472390mtgabs.
Pełny tekst źródłaWei, Duo, Henrik Junge, and Matthias Beller. "An amino acid based system for CO2 capture and catalytic utilization to produce formates." Chemical Science 12, no. 17 (2021): 6020–24. http://dx.doi.org/10.1039/d1sc00467k.
Pełny tekst źródłaKothandaraman, Jotheeswari, and David J. Heldebrant. "Towards environmentally benign capture and conversion: heterogeneous metal catalyzed CO2 hydrogenation in CO2 capture solvents." Green Chemistry 22, no. 3 (2020): 828–34. http://dx.doi.org/10.1039/c9gc03449h.
Pełny tekst źródłaAri, Betul, Erk Inger, Aydin K. Sunol, and Nurettin Sahiner. "Optimized Porous Carbon Particles from Sucrose and Their Polyethyleneimine Modifications for Enhanced CO2 Capture." Journal of Composites Science 8, no. 9 (2024): 338. http://dx.doi.org/10.3390/jcs8090338.
Pełny tekst źródłaHarwood, Gyan, and Leticia Avilés. "Differences in group size and the extent of individual participation in group hunting may contribute to differential prey-size use among social spiders." Biology Letters 9, no. 6 (2013): 20130621. http://dx.doi.org/10.1098/rsbl.2013.0621.
Pełny tekst źródłaStolaroff, Joshuah K., Congwang Ye, James S. Oakdale, et al. "Microencapsulation of advanced solvents for carbon capture." Faraday Discussions 192 (2016): 271–81. http://dx.doi.org/10.1039/c6fd00049e.
Pełny tekst źródłaLiu, Hengzhou, Ke Xie, and Edward Hartley Sargent. "Energy-Efficient Electrified Reactive Capture to Syngas Via Tuning of Morphology and Energetics of Catalyst Supports." ECS Meeting Abstracts MA2024-02, no. 62 (2024): 4207. https://doi.org/10.1149/ma2024-02624207mtgabs.
Pełny tekst źródłaChonyo, Shinglai1 Khusbu Samal*1 Narendra Kumar Maurya2 Khalasi Binal Rajeshbhai*2. "Carbon Sequestration: An Essential Approach to Addressing Climate Change." Fish world a monthly magazine 2, no. 3 (2025): 182–94. https://doi.org/10.5281/zenodo.15199468.
Pełny tekst źródłaDowson, G. R. M., I. Dimitriou, R. E. Owen, D. G. Reed, R. W. K. Allen, and P. Styring. "Kinetic and economic analysis of reactive capture of dilute carbon dioxide with Grignard reagents." Faraday Discussions 183 (2015): 47–65. http://dx.doi.org/10.1039/c5fd00049a.
Pełny tekst źródłaBelgamwar, Rajesh, Ayan Maity, Tisita Das, Sudip Chakraborty, Chathakudath P. Vinod, and Vivek Polshettiwar. "Lithium silicate nanosheets with excellent capture capacity and kinetics with unprecedented stability for high-temperature CO2 capture." Chemical Science 12, no. 13 (2021): 4825–35. http://dx.doi.org/10.1039/d0sc06843h.
Pełny tekst źródłaWang, Xueyuan, Ting He, Junhua Hu, and Min Liu. "The progress of nanomaterials for carbon dioxide capture via the adsorption process." Environmental Science: Nano 8, no. 4 (2021): 890–912. http://dx.doi.org/10.1039/d0en01140a.
Pełny tekst źródłaGuo, Zunmin, Feng Li, Yurou Celine Xiao, et al. "Efficient Amino-Acid-Based Reactive Capture via Catalyst and System Designs." ECS Meeting Abstracts MA2025-01, no. 41 (2025): 2248. https://doi.org/10.1149/ma2025-01412248mtgabs.
Pełny tekst źródłaXie, Ke, and Edward Hartley Sargent. "Electrified Reactive Capture: System and Catalyst Designs." ECS Meeting Abstracts MA2024-02, no. 62 (2024): 4237. https://doi.org/10.1149/ma2024-02624237mtgabs.
Pełny tekst źródłaBains, Praveen, Peter Psarras, and Jennifer Wilcox. "CO 2 capture from the industry sector." Progress in Energy and Combustion Science 63 (November 2017): 146–72. http://dx.doi.org/10.1016/j.pecs.2017.07.001.
Pełny tekst źródłaKnowles, Gregory P., Zhijian Liang, and Alan L. Chaffee. "Shaped polyethyleneimine sorbents for CO 2 capture." Microporous and Mesoporous Materials 238 (January 2017): 14–18. http://dx.doi.org/10.1016/j.micromeso.2016.03.019.
Pełny tekst źródłaTanner, John. "CO2 air-capture costs." Physics Today 76, no. 2 (2023): 12. http://dx.doi.org/10.1063/pt.3.5170.
Pełny tekst źródłaDu, Yang, Ye Yuan, and Gary T. Rochelle. "Volatility of amines for CO 2 capture." International Journal of Greenhouse Gas Control 58 (March 2017): 1–9. http://dx.doi.org/10.1016/j.ijggc.2017.01.001.
Pełny tekst źródłaSafina, O. R., R. V. Bikbulatov, A. R. Khusnutdinov, and A. A. Charki. "CO₂ CAPTURE FROM FLUE GASES OF GAS TURBINE POWER PLANTS." Petroleum Engineering 22, no. 4 (2024): 181–89. http://dx.doi.org/10.17122/ngdelo-2024-4-181-189.
Pełny tekst źródłaMorsi, Badie, Bingyun Li, Husain Ashkanani, and Rui Wang. "TEA of a Unique Two-Pathways Process for Post-Combustion CO2 Capture." Journal of Energy and Power Technology 04, no. 04 (2022): 1–25. http://dx.doi.org/10.21926/jept.2204033.
Pełny tekst źródłaJacobson, Mark Z. "The health and climate impacts of carbon capture and direct air capture." Energy & Environmental Science 12, no. 12 (2019): 3567–74. http://dx.doi.org/10.1039/c9ee02709b.
Pełny tekst źródłaAnantharaman, Rahul, Thijs Peters, Wen Xing, Marie-Laure Fontaine, and Rune Bredesen. "Dual phase high-temperature membranes for CO2 separation – performance assessment in post- and pre-combustion processes." Faraday Discussions 192 (2016): 251–69. http://dx.doi.org/10.1039/c6fd00038j.
Pełny tekst źródłaZhang, Zhien, Tohid Borhani, Muftah El-Naas, Salman Soltani, and Yunfei Yan. "Gas Capture Processes." Processes 8, no. 1 (2020): 70. http://dx.doi.org/10.3390/pr8010070.
Pełny tekst źródłaSinton, David. "(Invited) Electrochemical CO2 Capture." ECS Meeting Abstracts MA2025-01, no. 40 (2025): 2140. https://doi.org/10.1149/ma2025-01402140mtgabs.
Pełny tekst źródłaWang, Wenjing, Mi Zhou, and Daqiang Yuan. "Carbon dioxide capture in amorphous porous organic polymers." Journal of Materials Chemistry A 5, no. 4 (2017): 1334–47. http://dx.doi.org/10.1039/c6ta09234a.
Pełny tekst źródłaBhattacharyya, Debangsu, and David C. Miller. "Post-combustion CO 2 capture technologies — a review of processes for solvent-based and sorbent-based CO 2 capture." Current Opinion in Chemical Engineering 17 (August 2017): 78–92. http://dx.doi.org/10.1016/j.coche.2017.06.005.
Pełny tekst źródłaSmit, Berend. "Carbon Capture and Storage: introductory lecture." Faraday Discussions 192 (2016): 9–25. http://dx.doi.org/10.1039/c6fd00148c.
Pełny tekst źródłaSun, Siyu, Rui Kai Miao, Yurou Celine Xiao, and David Sinton. "Identifying an Optimal Post-Capture pH for Hydroxide-Based Reactive Capture in Industrial Applications." ECS Meeting Abstracts MA2024-02, no. 62 (2024): 4242. https://doi.org/10.1149/ma2024-02624242mtgabs.
Pełny tekst źródłaA.Y., Iorliam, Opukumo A.W., and Anum B. "Carbon Capture Potential in Waste Modified Soils: A Review." International Journal of Mechanical and Civil Engineering 5, no. 1 (2022): 25–38. http://dx.doi.org/10.52589/ijmce-x4j0etuu.
Pełny tekst źródłaKeeling, Ralph F., Andrew C. Manning, and Manvendra K. Dubey. "The atmospheric signature of carbon capture and storage." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369, no. 1943 (2011): 2113–32. http://dx.doi.org/10.1098/rsta.2011.0016.
Pełny tekst źródłaHamed, Ali Mahmoud, Tengku Nordayana Akma Tuan Kamaruddin, Nabilah Ramli, and Mohd Firdaus Abdul Wahab. "Design and simulate an amine-based CO2 capture process for a steam methane reforming hydrogen production plant." IOP Conference Series: Earth and Environmental Science 1281, no. 1 (2023): 012048. http://dx.doi.org/10.1088/1755-1315/1281/1/012048.
Pełny tekst źródłaLiu, Shijie, Jinqiang Zhang, Feng Li, et al. "Direct Air Capture of CO2 via Cyclic Viologen Electrocatalysis." ECS Meeting Abstracts MA2025-01, no. 39 (2025): 2082. https://doi.org/10.1149/ma2025-01392082mtgabs.
Pełny tekst źródłaDe Oliveira Maciel, Ayanne, Paul Christakopoulos, Ulrika Rova, and Io Antonopoulou. "Enzyme-accelerated CO2 capture and storage (CCS) using paper and pulp residues as co-sequestrating agents." RSC Advances 14, no. 9 (2024): 6443–61. http://dx.doi.org/10.1039/d3ra06927c.
Pełny tekst źródłabinti Mudzarol, Nor Haleeda, and Wan Norlinda Roshana binti Mohd Nawi. "Carbon Dioxide (CO<sub>2</sub>) Capture and Utilization Targeting." Key Engineering Materials 974 (February 16, 2024): 173–78. http://dx.doi.org/10.4028/p-p2vqwr.
Pełny tekst źródłaPatel, Hasmukh A., and Cafer T. Yavuz. "Highly optimized CO2 capture by inexpensive nanoporous covalent organic polymers and their amine composites." Faraday Discussions 183 (2015): 401–12. http://dx.doi.org/10.1039/c5fd00099h.
Pełny tekst źródła