Artykuły w czasopismach na temat „Carbon nanocage”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Carbon nanocage”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Shi, Qiang Qiang, Hang Zhan, Yu Zhang, and Jian Nong Wang. "Highly flexible and free-standing carbon nanotube/hollow carbon nanocage hybrid films for high-performance supercapacitors." RSC Advances 11, no. 12 (2021): 6655–61. http://dx.doi.org/10.1039/d0ra09710a.
Pełny tekst źródłaLi, Jiang Tao. "A Mild Method Prepared Carboxy Carbon Nanocage." Advanced Materials Research 560-561 (August 2012): 742–46. http://dx.doi.org/10.4028/www.scientific.net/amr.560-561.742.
Pełny tekst źródłaLiu, Xin, and Zahra Ahmadi. "H2O and H2S adsorption by assistance of a heterogeneous carbon-boron-nitrogen nanocage: Computational study." Main Group Chemistry 21, no. 1 (2022): 185–93. http://dx.doi.org/10.3233/mgc-210113.
Pełny tekst źródłaNiu, Ruiting, Huailin Fan, Qingfu Ban, et al. "Iodine-Doped Hollow Carbon Nanocages without Templates Strategy for Boosting Zinc-Ion Storage by Nucleophilicity." Materials 17, no. 4 (2024): 838. http://dx.doi.org/10.3390/ma17040838.
Pełny tekst źródłaVinu, Ajayan, Toshiyuki Mori, and Katsuhiko Ariga. "Preparation and Characterization of Carbon Nitride Nanocage." Transactions of the Materials Research Society of Japan 32, no. 4 (2007): 991–94. http://dx.doi.org/10.14723/tmrsj.32.991.
Pełny tekst źródłaLiao, Xianjiu, Jing Wu, Yan Du, et al. "Nitrogen doped carbon nanocage modulated turn-on fluorescent probes for ATP detection in vitro and imaging in living cells." Analytical Methods 10, no. 39 (2018): 4765–75. http://dx.doi.org/10.1039/c8ay01364k.
Pełny tekst źródłaJian, Siou-Ling, Li-Yin Hsiao, Min-Hsin Yeh, and Kuo-Chuan Ho. "Designing a carbon nanotubes-interconnected ZIF-derived cobalt sulfide hybrid nanocage for supercapacitors." Journal of Materials Chemistry A 7, no. 4 (2019): 1479–90. http://dx.doi.org/10.1039/c8ta07686c.
Pełny tekst źródłaWu, Mao, Yansheng Gong, Tao Nie, et al. "Template-free synthesis of nanocage-like g-C3N4 with high surface area and nitrogen defects for enhanced photocatalytic H2 activity." Journal of Materials Chemistry A 7, no. 10 (2019): 5324–32. http://dx.doi.org/10.1039/c8ta12076e.
Pełny tekst źródłaHashikawa, Yoshifumi, та Yasujiro Murata. "H2O/Olefinic-π Interaction inside a Carbon Nanocage". Journal of the American Chemical Society 141, № 32 (2019): 12928–38. http://dx.doi.org/10.1021/jacs.9b06759.
Pełny tekst źródłaPeköz, Rengin, and Şakir Erkoç. "Li+ and Li Interactions with Carbon Nanocage Structures." Journal of Nanoscience and Nanotechnology 8, no. 2 (2008): 675–78. http://dx.doi.org/10.1166/jnn.2008.d021.
Pełny tekst źródłaMiah, Md Helal, Md Rakib Hossain, Md Saiful Islam, Tahmina Ferdous, and Farid Ahmed. "A theoretical study of allopurinol drug sensing by carbon and boron nitride nanostructures: DFT, QTAIM, RDG, NBO and PCM insights." RSC Advances 11, no. 61 (2021): 38457–72. http://dx.doi.org/10.1039/d1ra06948a.
Pełny tekst źródłaMollaamin, Fatemeh, and Majid Monajjemi. "B<sub>5</sub>N<sub>10</sub> Nanocarrier Functionalized with Al, C, Si Atoms: A Drug Delivery Method for Infectious Disease Remedy." OBM Genetics 08, no. 01 (2024): 1–19. http://dx.doi.org/10.21926/obm.genet.2401214.
Pełny tekst źródłaLi, Yixuan, Yanqi Xu, Cunjun Li, et al. "ZIF-67-Derived NiCo-Layered Double Hydroxide@carbon Nanotube Architectures with Hollow Nanocage Structures as Enhanced Electrocatalysts for Ethanol Oxidation Reaction." Molecules 28, no. 3 (2023): 1173. http://dx.doi.org/10.3390/molecules28031173.
Pełny tekst źródłaHu, Shengliang, Jinlong Yang, Wei Liu, Yingge Dong, and Shirui Cao. "Carbon nanocage bubbles produced by pulsed-laser ablation of carbon in water." Carbon 49, no. 4 (2011): 1505–7. http://dx.doi.org/10.1016/j.carbon.2010.11.041.
Pełny tekst źródłaDatta, K. K. R., Ajayan Vinu, Saikat Mandal, Salem Al-Deyab, Jonathan P. Hill, and Katsuhiko Ariga. "Carbon Nanocage: Super-Adsorber of Intercalators for DNA Protection." Journal of Nanoscience and Nanotechnology 11, no. 4 (2011): 3084–90. http://dx.doi.org/10.1166/jnn.2011.4155.
Pełny tekst źródłaMelinon, Patrice, and Alfonso San Miguel. "ChemInform Abstract: From Silicon to Carbon Clathrates: Nanocage Materials." ChemInform 43, no. 38 (2012): no. http://dx.doi.org/10.1002/chin.201238224.
Pełny tekst źródłaOku, Takeo, T. Hirata, N. Motegi, et al. "Formation of carbon nanostructures with Ge and SiC nanoparticles prepared by direct current and radio frequency hybrid arc discharge." Journal of Materials Research 15, no. 10 (2000): 2182–86. http://dx.doi.org/10.1557/jmr.2000.0314.
Pełny tekst źródłaERKOÇ, ŞAKIR, and DERVIŞ CAN VURAL. "MOLECULAR-DYNAMICS SIMULATIONS OF CARBON NANOCAGE STRUCTURES: NANOBALLS AND NANOTOROIDS." International Journal of Modern Physics C 12, no. 05 (2001): 685–90. http://dx.doi.org/10.1142/s0129183101001924.
Pełny tekst źródłaLi, Meng, Yujie Huang, Jiaqi Lin, et al. "Carbon Nanotubes Interconnected NiCo Layered Double Hydroxide Rhombic Dodecahedral Nanocages for Efficient Oxygen Evolution Reaction." Nanomaterials 12, no. 6 (2022): 1015. http://dx.doi.org/10.3390/nano12061015.
Pełny tekst źródłaWang, Han, Sidra Jamil, Wenwen Tang, et al. "Melamine-Sacrificed Pyrolytic Synthesis of Spiderweb-like Nanocages Encapsulated with Catalytic Co Atoms as Cathode for Advanced Li-S Batteries." Batteries 8, no. 10 (2022): 161. http://dx.doi.org/10.3390/batteries8100161.
Pełny tekst źródłaVinu, Ajayan, Masahiko Miyahara, Vajiravelu Sivamurugan, Toshiyuki Mori, and Katsuhiko Ariga. "Large pore cage type mesoporous carbon, carbon nanocage: a superior adsorbent for biomaterials." Journal of Materials Chemistry 15, no. 48 (2005): 5122. http://dx.doi.org/10.1039/b507456h.
Pełny tekst źródłade Sousa, Fábio Nascimento, Divino Eliaquino Araújo Rodrigues, Fabrício Morais de Vasconcelos, Vincent Meunier, and Eduardo Costa Girão. "Electronic properties of carbon nanostructures based on bipartite nanocage units." Chemical Physics 580 (April 2024): 112206. http://dx.doi.org/10.1016/j.chemphys.2024.112206.
Pełny tekst źródłaAshraf, Muhammad Aqeel, Zhenling Liu, Dangquan Zhang, and Meysam Najafi. "Aluminum-doped silicon nanocage and boron-doped carbon nanocage as catalysts to oxygen reduction reaction (ORR): a computational investigation." Ionics 26, no. 6 (2020): 3085–90. http://dx.doi.org/10.1007/s11581-020-03450-7.
Pełny tekst źródłaQiao, Yuqing, Na Li, Mingwei Dong, et al. "MOF-Derived MnO/C Nanocomposites for High-Performance Supercapacitors." Nanomaterials 12, no. 23 (2022): 4257. http://dx.doi.org/10.3390/nano12234257.
Pełny tekst źródłaKwon, Taehyun, Sunghyun Lim, Minki Jun, et al. "Pt2+-Exchanged ZIF-8 nanocube as a solid-state precursor for L10-PtZn intermetallic nanoparticles embedded in a hollow carbon nanocage." Nanoscale 12, no. 2 (2020): 1118–27. http://dx.doi.org/10.1039/c9nr09318d.
Pełny tekst źródłaOku, Takeo, Takanori Hirano, Katsuaki Suganuma, and Satoru Nakajima. "Formation and structure of carbon nanocage structures produced by polymer pyrolysis and electron-beam irradiation." Journal of Materials Research 14, no. 11 (1999): 4266–73. http://dx.doi.org/10.1557/jmr.1999.0578.
Pełny tekst źródłaDatta, K. K. R., Ajayan Vinu, Saikat Mandal, Salem Al-Deyab, Jonathan P. Hill, and Katsuhiko Ariga. "Base-Selective Adsorption of Nucleosides to Pore-Engineered Nanocarbon, Carbon Nanocage." Journal of Nanoscience and Nanotechnology 11, no. 5 (2011): 3959–64. http://dx.doi.org/10.1166/jnn.2011.4138.
Pełny tekst źródłaSon, Yeonguk, Jiyoung Ma, Namhyung Kim, et al. "Quantification of Pseudocapacitive Contribution in Nanocage‐Shaped Silicon–Carbon Composite Anode." Advanced Energy Materials 9, no. 11 (2019): 1803480. http://dx.doi.org/10.1002/aenm.201803480.
Pełny tekst źródłaHayase, Norihiko, Juntaro Nogami, Yu Shibata, and Ken Tanaka. "Synthesis of a Strained Spherical Carbon Nanocage by Regioselective Alkyne Cyclotrimerization." Angewandte Chemie International Edition 58, no. 28 (2019): 9439–42. http://dx.doi.org/10.1002/anie.201903422.
Pełny tekst źródłaHayase, Norihiko, Juntaro Nogami, Yu Shibata, and Ken Tanaka. "Synthesis of a Strained Spherical Carbon Nanocage by Regioselective Alkyne Cyclotrimerization." Angewandte Chemie 131, no. 28 (2019): 9539–42. http://dx.doi.org/10.1002/ange.201903422.
Pełny tekst źródłaXu, Xintong, Jiaqi Chen, Lang Sun, et al. "Low-temperature synthesis of a carbon nanocage saturable absorber for pulsed erbium-doped fiber laser generation." Journal of Materials Chemistry C 10, no. 1 (2022): 235–43. http://dx.doi.org/10.1039/d1tc04791d.
Pełny tekst źródłaVinu, Ajayan, Masahiko Miyahara, Toshiyuki Mori, and Katsuhiko Ariga. "Carbon nanocage: a large-pore cage-type mesoporous carbon material as an adsorbent for biomolecules." Journal of Porous Materials 13, no. 3-4 (2006): 379–83. http://dx.doi.org/10.1007/s10934-006-8034-1.
Pełny tekst źródłaWang, Cunguo, Hewei Song, Congcong Yu, et al. "Iron single-atom catalyst anchored on nitrogen-rich MOF-derived carbon nanocage to accelerate polysulfide redox conversion for lithium sulfur batteries." Journal of Materials Chemistry A 8, no. 6 (2020): 3421–30. http://dx.doi.org/10.1039/c9ta11680j.
Pełny tekst źródłaOku, Takeo, and Katsuaki Suganuma. "Carbon nanocage structures formed by one-dimensional self-organization of gold nanoparticles." Chemical Communications, no. 23 (1999): 2355–56. http://dx.doi.org/10.1039/a905767f.
Pełny tekst źródłaSrinivasu, Pavuluri, Veerappan Vaithilingam Balasubramanian, Loganathan Kumaresan, et al. "Carboxyl Group Functionalization of Mesoporous Carbon Nanocage through Reaction with Ammonium Persulfate." Journal of Nanoscience and Nanotechnology 7, no. 9 (2007): 3250–56. http://dx.doi.org/10.1166/jnn.2007.919.
Pełny tekst źródłaJiang, Ling, Kan Wang, Fen Zhang, Yuanjian Zhang, Huaisheng Wang, and Songqin Liu. "Enhanced Metabolic Activity of Cytochrome P450 via Carbon Nanocage-Based Photochemical Bionanoreactor." ACS Applied Materials & Interfaces 10, no. 49 (2018): 41956–61. http://dx.doi.org/10.1021/acsami.8b14810.
Pełny tekst źródłaOku, Takeo, Hidehiko Kitahara, Masaki Kuno, Ichihito Narita, and Katsuaki Suganuma. "Synthesis, atomic structures and arrangement of carbon and boron nitride nanocage materials." Scripta Materialia 44, no. 8-9 (2001): 1557–60. http://dx.doi.org/10.1016/s1359-6462(01)00726-6.
Pełny tekst źródłaZhang, Erjin, Bin Wang, Jue Wang, et al. "Rapidly synthesizing interconnected carbon nanocage by microwave toward high-performance aluminum batteries." Chemical Engineering Journal 389 (June 2020): 124407. http://dx.doi.org/10.1016/j.cej.2020.124407.
Pełny tekst źródłaLin, Pei, Baolin Li, Jiangtao Li, Huichun Wang, Xiaobing Bian, and Xiaomei Wang. "Synthesis of Sulfonated Carbon Nanocage and Its Performance as Solid Acid Catalyst." Catalysis Letters 141, no. 3 (2010): 459–66. http://dx.doi.org/10.1007/s10562-010-0526-6.
Pełny tekst źródłaYu, Xingmiao, Jianfei Xiang, Qitao Shi, et al. "Tailoring the Li+ Intercalation Energy of Carbon Nanocage Anodes Via Atomic Al-Doping for High-Performance Lithium-Ion Batteries." Small 20, no. 50 (2024): 2406309. https://doi.org/10.1002/smll.202406309.
Pełny tekst źródłaJiang, Min, Liangjun Li, Dandan Zhu, Hongyu Zhang, and Xuebo Zhao. "Oxygen reduction in the nanocage of metal–organic frameworks with an electron transfer mediator." J. Mater. Chem. A 2, no. 15 (2014): 5323–29. http://dx.doi.org/10.1039/c3ta15319c.
Pełny tekst źródłaZhang, Yanan, Dong Yan, Zefei Liu, et al. "A SnOx Quantum Dots Embedded Carbon Nanocage Network with Ultrahigh Li Storage Capacity." ACS Nano 15, no. 4 (2021): 7021–31. http://dx.doi.org/10.1021/acsnano.1c00088.
Pełny tekst źródłaLi, Bao Lin, Bo Zhang, Qi Hua Zhang, Yuan Wei Rong, Zhuan Xin Wan, and Wei Wang. "Sulfonated Carbon Nanocage as a Catalyst for the per-O-Acetylation of Carbohydrates." Кинетика и катализ 55, no. 2 (2014): 243–46. http://dx.doi.org/10.7868/s0453881114020038.
Pełny tekst źródłaHuang, Yi Hong, Jian Hua Chen, Xue Sun, et al. "Graphitic carbon nanocage modified electrode for highly sensitive and selective detection of dopamine." RSC Advances 5, no. 100 (2015): 82623–30. http://dx.doi.org/10.1039/c5ra15200c.
Pełny tekst źródłaOku, Takeo, Masaki Kuno, Hidehiko Kitahara, and Ichihito Narita. "Formation, atomic structures and properties of boron nitride and carbon nanocage fullerene materials." International Journal of Inorganic Materials 3, no. 7 (2001): 597–612. http://dx.doi.org/10.1016/s1466-6049(01)00169-6.
Pełny tekst źródłaLi, Bao Lin, Bo Zhang, Qi Hua Zhang, Yuan Wei Rong, Zhuan Xin Wan, and Wei Wang. "Sulfonated carbon nanocage as a catalyst for the per-O-acetylation of carbohydrates." Kinetics and Catalysis 55, no. 2 (2014): 233–36. http://dx.doi.org/10.1134/s0023158414020037.
Pełny tekst źródłaFan, Fangfang, Yanxing Hui, Rajkumar Devasenathipathy, et al. "Composition-adjustable Mo6Co6C2/Co@carbon nanocage for enhanced oxygen reduction and evolution reactions." Journal of Colloid and Interface Science 636 (April 2023): 450–58. http://dx.doi.org/10.1016/j.jcis.2023.01.039.
Pełny tekst źródłaMa, Lijuan. "Zn-doped carbon nanocage and Zn-doped silicon nanocage (Zn-C52 and Zn-Si52) as catalysts of nitrogen (N2) reduction to ammonia (NH3) conversion." Journal of Molecular Liquids 390 (November 2023): 123162. http://dx.doi.org/10.1016/j.molliq.2023.123162.
Pełny tekst źródłaZhu, Xiaoqing, Fengjiao Guo, Qi Yang, Hongyu Mi, Congcong Yang, and Jieshan Qiu. "Boosting zinc-ion storage capability by engineering hierarchically porous nitrogen-doped carbon nanocage framework." Journal of Power Sources 506 (September 2021): 230224. http://dx.doi.org/10.1016/j.jpowsour.2021.230224.
Pełny tekst źródłaLu, Jijun, Dong Wang, Junhao Liu, Guoyu Qian, Yanan Chen, and Zhi Wang. "Hollow double-layer carbon nanocage confined Si nanoparticles for high performance lithium-ion batteries." Nanoscale Advances 2, no. 8 (2020): 3222–30. http://dx.doi.org/10.1039/d0na00297f.
Pełny tekst źródła