Artykuły w czasopismach na temat „Carbonic nanoparticles”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Carbonic nanoparticles”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Demchenko, Alexander. "Excitons in Carbonic Nanostructures." C — Journal of Carbon Research 5, no. 4 (2019): 71. http://dx.doi.org/10.3390/c5040071.
Pełny tekst źródłaLizoňová, Denisa, Monika Majerská, Vlastimil Král, et al. "Antibody-pHPMA functionalised fluorescent silica nanoparticles for colorectal carcinoma targeting." RSC Advances 8, no. 39 (2018): 21679–89. http://dx.doi.org/10.1039/c8ra03487g.
Pełny tekst źródłaClark, Andrew J., Devin T. Wiley, Jonathan E. Zuckerman, et al. "CRLX101 nanoparticles localize in human tumors and not in adjacent, nonneoplastic tissue after intravenous dosing." Proceedings of the National Academy of Sciences 113, no. 14 (2016): 3850–54. http://dx.doi.org/10.1073/pnas.1603018113.
Pełny tekst źródłaVerdoliva, Valentina, Viviana De Luca, Claudiu T. Supuran, Stefania De Luca, and Clemente Capasso. "Acetazolamide-Loaded Nanoparticle Based on Modified Hyaluronic Acid as Delivery System to Target Carbonic Anhydrases in Escherichia coli." International Journal of Molecular Sciences 26, no. 10 (2025): 4908. https://doi.org/10.3390/ijms26104908.
Pełny tekst źródłaGößl, Dorothée, Helena Singer, Hsin-Yi Chiu, et al. "Highly active enzymes immobilized in large pore colloidal mesoporous silica nanoparticles." New Journal of Chemistry 43, no. 4 (2019): 1671–80. http://dx.doi.org/10.1039/c8nj04585b.
Pełny tekst źródłaMikolajczak, Dorian J., and Beate Koksch. "Peptide–Gold Nanoparticle Conjugates as Artificial Carbonic Anhydrase Mimics." Catalysts 9, no. 11 (2019): 903. http://dx.doi.org/10.3390/catal9110903.
Pełny tekst źródłaAlhumaydhi, Fahad A. "Green Synthesis of Gold Nanoparticles Using Extract of Pistacia chinensis and Their In Vitro and In Vivo Biological Activities." Journal of Nanomaterials 2022 (June 30, 2022): 1–11. http://dx.doi.org/10.1155/2022/5544475.
Pełny tekst źródłaVinoba, Mari, Margandan Bhagiyalakshmi, Soon Kwan Jeong, Sung Chan Nam, and Yeoil Yoon. "Carbonic Anhydrase Immobilized on Encapsulated Magnetic Nanoparticles for CO2Sequestration." Chemistry - A European Journal 18, no. 38 (2012): 12028–34. http://dx.doi.org/10.1002/chem.201201112.
Pełny tekst źródłaCabaleiro-Lago, Celia, and Martin Lundqvist. "The Effect of Nanoparticles on the Structure and Enzymatic Activity of Human Carbonic Anhydrase I and II." Molecules 25, no. 19 (2020): 4405. http://dx.doi.org/10.3390/molecules25194405.
Pełny tekst źródłaBugárová, Nikola, Zdenko Špitálsky, Matej Mičušík, et al. "A Multifunctional Graphene Oxide Platform for Targeting Cancer." Cancers 11, no. 6 (2019): 753. http://dx.doi.org/10.3390/cancers11060753.
Pełny tekst źródłaDuart, Marcelo Adriano, Oscar Endrigo Dorneles Rodrigues, and Sérgio Roberto Mortari. "Carbonic nanoparticles and C-S-H insertion into cementitious nanocomposite." International Journal of Advanced Engineering Research and Science 5, no. 5 (2018): 14–19. http://dx.doi.org/10.22161/ijaers.5.5.2.
Pełny tekst źródłaAssarsson, Anna, Isabel Pastoriza-Santos, and Celia Cabaleiro-Lago. "Inactivation and Adsorption of Human Carbonic Anhydrase II by Nanoparticles." Langmuir 30, no. 31 (2014): 9448–56. http://dx.doi.org/10.1021/la501413r.
Pełny tekst źródłaTouisni, Nadia, Nasreddine Kanfar, Sébastien Ulrich, et al. "Fluorescent Silica Nanoparticles with Multivalent Inhibitory Effects towards Carbonic Anhydrases." Chemistry - A European Journal 21, no. 29 (2015): 10306–9. http://dx.doi.org/10.1002/chem.201501037.
Pełny tekst źródłaTouisni, Nadia, Nasreddine Kanfar, Sébastien Ulrich, et al. "Fluorescent Silica Nanoparticles with Multivalent Inhibitory Effects towards Carbonic Anhydrases." Chemistry - A European Journal 21, no. 29 (2015): 10249. http://dx.doi.org/10.1002/chem.201501917.
Pełny tekst źródłaNovikov, Ilya V., Marina A. Pigaleva, Sergei S. Abramchuk, Vyacheslav S. Molchanov, Olga E. Philippova, and Marat O. Gallyamov. "Chitosan composites with Ag nanoparticles formed in carbonic acid solutions." Carbohydrate Polymers 190 (June 2018): 103–12. http://dx.doi.org/10.1016/j.carbpol.2018.02.076.
Pełny tekst źródłaTatiparti, Katyayani, Mohd Ahmar Rauf, Samaresh Sau, and Arun K. Iyer. "Carbonic Anhydrase-IX Guided Albumin Nanoparticles for Hypoxia-mediated Triple-Negative Breast Cancer Cell Killing and Imaging of Patient-derived Tumor." Molecules 25, no. 10 (2020): 2362. http://dx.doi.org/10.3390/molecules25102362.
Pełny tekst źródłaDoğan, Murat, Ümit Muhammet Koçyiğit, Duygu Taşkın, Beyza Nur Yılmaz, and Turgut Taşkın. "Preparation and characterization of chitosan nanoparticles with extracts of Rheum ribes, evaluation of biological activities of extracts and extract loaded nanoparticles." International Journal of Secondary Metabolite 11, no. 4 (2024): 751–64. http://dx.doi.org/10.21448/ijsm.1425978.
Pełny tekst źródłaBillsten, Peter, Uno Carlsson, Bengt Harald Jonsson, Gerd Olofsson, Fredrik Höök, and Hans Elwing. "Conformation of Human Carbonic Anhydrase II Variants Adsorbed to Silica Nanoparticles." Langmuir 15, no. 19 (1999): 6395–99. http://dx.doi.org/10.1021/la980288u.
Pełny tekst źródłaAko-Adounvo, Ann-Marie, and Pradeep K. Karla. "Preparation and In Vitro Testing of Brinzolamide-Loaded Poly Lactic-Co-Glycolic Acid (PLGA) Nanoparticles for Sustained Drug Delivery." Journal of Clinical & Translational Ophthalmology 2, no. 1 (2024): 1–14. http://dx.doi.org/10.3390/jcto2010001.
Pełny tekst źródłaAntal, Iryna, Martina Koneracka, Martina Kubovcikova, et al. "Targeting of carbonic anhydrase IX-positive cancer cells by glycine-coated superparamagnetic nanoparticles." Colloids and Surfaces B: Biointerfaces 205 (September 2021): 111893. http://dx.doi.org/10.1016/j.colsurfb.2021.111893.
Pełny tekst źródłaTalebzadeh, Zeinab, Qahtan A. Yousif, Maryam Masjedi-Arani, and Masoud Salavati-Niasari. "Sonochemistry fabrication of Er2Sn2O7 nanoparticles with advanced photocatalytic performance of their carbonic nanocomposites." International Journal of Hydrogen Energy 47, no. 25 (2022): 12615–28. http://dx.doi.org/10.1016/j.ijhydene.2022.02.025.
Pełny tekst źródłaShatokhin, A. N., A. V. Egorov, K. I. Maslakov, and F. N. Putilin. "Laser synthesis of metal–metaloxide nanoparticles on carbonic materials in an electric field." Bulletin of the Russian Academy of Sciences: Physics 80, no. 4 (2016): 387–92. http://dx.doi.org/10.3103/s1062873816040286.
Pełny tekst źródłaAl-Dhrub, Ahmed Hussein Ali, Selmihan Sahin, Ismail Ozmen, Ekrem Tunca, and Metin Bulbul. "Immobilization and characterization of human carbonic anhydrase I on amine functionalized magnetic nanoparticles." Process Biochemistry 57 (June 2017): 95–104. http://dx.doi.org/10.1016/j.procbio.2017.03.025.
Pełny tekst źródłaYadav, Renu, Meenal Joshi, Snehal Wanjari, et al. "Immobilization of Carbonic Anhydrase on Chitosan Stabilized Iron Nanoparticles for the Carbonation Reaction." Water, Air, & Soil Pollution 223, no. 8 (2012): 5345–56. http://dx.doi.org/10.1007/s11270-012-1284-4.
Pełny tekst źródłaNovikov, Ilya V., Marina A. Pigaleva, Eduard E. Levin, et al. "The mechanism of stabilization of silver nanoparticles by chitosan in carbonic acid solutions." Colloid and Polymer Science 298, no. 9 (2020): 1135–48. http://dx.doi.org/10.1007/s00396-020-04683-8.
Pełny tekst źródłaNie, Guo Chao, Di Si, Gwang Seong Kim, et al. "A Novel Nonionic, Multi-Surfactant System and Separation Method for the Synthesis of Active Carbonic Anhydrase Nanoparticles." Advanced Materials Research 399-401 (November 2011): 509–13. http://dx.doi.org/10.4028/www.scientific.net/amr.399-401.509.
Pełny tekst źródłaBodor, Marius, Rafael M. Santos, Yi Wai Chiang, Maria Vlad, and Tom Van Gerven. "Impacts of Nickel Nanoparticles on Mineral Carbonation." Scientific World Journal 2014 (2014): 1–10. http://dx.doi.org/10.1155/2014/921974.
Pełny tekst źródłaAntipov, S. A., T. A. Feduschak, O. V. Kokorev, et al. "Antitumor in vitro and in vivo effects of lipid composites of cisplatin and ferromagnetic nanoparticles capsulated by carbonic coating." Bulletin of Siberian Medicine 9, no. 1 (2010): 9–16. http://dx.doi.org/10.20538/1682-0363-2010-1-9-16.
Pełny tekst źródłaPerfetto, Rosa, Sonia Del Prete, Daniela Vullo, et al. "Production and covalent immobilisation of the recombinant bacterial carbonic anhydrase (SspCA) onto magnetic nanoparticles." Journal of Enzyme Inhibition and Medicinal Chemistry 32, no. 1 (2017): 759–66. http://dx.doi.org/10.1080/14756366.2017.1316719.
Pełny tekst źródłaPeirce, S., M. E. Russo, R. Perfetto, et al. "Kinetic characterization of carbonic anhydrase immobilized on magnetic nanoparticles as biocatalyst for CO2 capture." Biochemical Engineering Journal 138 (October 2018): 1–11. http://dx.doi.org/10.1016/j.bej.2018.06.017.
Pełny tekst źródłaKhatibi, Ali, Leila Ma’mani, Reza Khodarahmi, et al. "Enhancement of thermal reversibility and stability of human carbonic anhydrase II by mesoporous nanoparticles." International Journal of Biological Macromolecules 75 (April 2015): 67–72. http://dx.doi.org/10.1016/j.ijbiomac.2015.01.019.
Pełny tekst źródłaNogalska, Adrianna, Mario Ammendola, Carla A. M. Portugal, Bartosz Tylkowski, Joao G. Crespo, and Ricard Garcia – Valls. "Polysulfone biomimetic membrane for CO2 capture." Functional Materials Letters 11, no. 05 (2018): 1850046. http://dx.doi.org/10.1142/s1793604718500467.
Pełny tekst źródłaBurunkova, J. A., I. Y. Denisyuk, Vera Bulgakova, and Sandor Kokenyesi. "TiO2-Acrylate Nanocomposites Elaborated by UV-Curing with Tunable Properties." Solid State Phenomena 200 (April 2013): 173–77. http://dx.doi.org/10.4028/www.scientific.net/ssp.200.173.
Pełny tekst źródłaStamer, Katerina S., Marina A. Pigaleva, Anastasiya A. Pestrikova, et al. "Water Saturated with Pressurized CO2 as a Tool to Create Various 3D Morphologies of Composites Based on Chitosan and Copper Nanoparticles." Molecules 27, no. 21 (2022): 7261. http://dx.doi.org/10.3390/molecules27217261.
Pełny tekst źródłaStamer, K. S., M. A. Pigaleva, S. S. Abramchuk, and M. O. Gallyamov. "Principles of Gold Nanoparticles Stabilization with Chitosan in Carbonic Acid Solutions Under High CO2 Pressure." Doklady Physical Chemistry 495, no. 1 (2020): 166–70. http://dx.doi.org/10.1134/s0012501620110020.
Pełny tekst źródłaLundqvist, Martin, Cecilia Andresen, Sara Christensson, et al. "Proteolytic Cleavage Reveals Interaction Patterns between Silica Nanoparticles and Two Variants of Human Carbonic Anhydrase." Langmuir 21, no. 25 (2005): 11903–6. http://dx.doi.org/10.1021/la050477u.
Pełny tekst źródłaAhmadi, Mohammad Taghi, Neda Mousavi, Truong Khang Nguyen, Seyed Saeid Rahimian Koloor, and Michal Petrů. "Carbon Nanoparticle-Based Electro-Thermal Building Block." Applied Sciences 10, no. 15 (2020): 5117. http://dx.doi.org/10.3390/app10155117.
Pełny tekst źródłaYong, Joel K. J., Jiwei Cui, Kwun Lun Cho, Geoff W. Stevens, Frank Caruso, and Sandra E. Kentish. "Surface Engineering of Polypropylene Membranes with Carbonic Anhydrase-Loaded Mesoporous Silica Nanoparticles for Improved Carbon Dioxide Hydration." Langmuir 31, no. 22 (2015): 6211–19. http://dx.doi.org/10.1021/acs.langmuir.5b01020.
Pełny tekst źródłaTouisni, Nadia, Nasreddine Kanfar, Sébastien Ulrich, et al. "Cover Picture: Fluorescent Silica Nanoparticles with Multivalent Inhibitory Effects towards Carbonic Anhydrases (Chem. Eur. J. 29/2015)." Chemistry - A European Journal 21, no. 29 (2015): 10245. http://dx.doi.org/10.1002/chem.201590127.
Pełny tekst źródłaAkiyoshi, Kazunari, Yoshihiro Sasaki, and Junzo Sunamoto. "Molecular Chaperone-Like Activity of Hydrogel Nanoparticles of Hydrophobized Pullulan: Thermal Stabilization with Refolding of Carbonic Anhydrase B." Bioconjugate Chemistry 10, no. 3 (1999): 321–24. http://dx.doi.org/10.1021/bc9801272.
Pełny tekst źródłaBillsten, Peter, Per-Ola Freskgård, Uno Carlsson, Bengt-Harald Jonsson, and Hans Elwing. "Adsorption to silica nanoparticles of human carbonic anhydrase II and truncated forms induce a molten-globule-like structure." FEBS Letters 402, no. 1 (1997): 67–72. http://dx.doi.org/10.1016/s0014-5793(96)01431-7.
Pełny tekst źródłaAssarsson, A., I. Nasir, M. Lundqvist, and C. Cabaleiro-Lago. "Kinetic and thermodynamic study of the interactions between human carbonic anhydrase variants and polystyrene nanoparticles of different size." RSC Advances 6, no. 42 (2016): 35868–74. http://dx.doi.org/10.1039/c6ra06175c.
Pełny tekst źródłaFarah M. Ghazal, Muna H. Jankeer, and Hafidh I. Al-Sadi. "Effect of Multi-Walled Carbon Nanotubes on lung tissue and concentration of enzyme Carbonic anhydrase in the New Zealand white rabbit." Tikrit Journal of Pure Science 22, no. 3 (2023): 49–57. http://dx.doi.org/10.25130/tjps.v22i3.711.
Pełny tekst źródłaYadav, Raman P., Sveeta V. Mhatre, and Amita A. Bhagit. "Biofabrication of Bifunctional Cerium Oxide Nanoparticles using Phaseolus vulgaris with Enhanced Antioxidant and Carbonic Anhydrase Class 1 Inhibitory Activity." MGM Journal of Medical Sciences 3, no. 4 (2016): 161–66. http://dx.doi.org/10.5005/jp-journals-10036-1117.
Pełny tekst źródłaNasir, Irem, Martin Lundqvist, and Celia Cabaleiro-Lago. "Size and surface chemistry of nanoparticles lead to a variant behavior in the unfolding dynamics of human carbonic anhydrase." Nanoscale 7, no. 41 (2015): 17504–15. http://dx.doi.org/10.1039/c5nr05360a.
Pełny tekst źródłaZhang, Shihan, Yongqi Lu, and Xinhuai Ye. "Catalytic behavior of carbonic anhydrase enzyme immobilized onto nonporous silica nanoparticles for enhancing CO2 absorption into a carbonate solution." International Journal of Greenhouse Gas Control 13 (March 2013): 17–25. http://dx.doi.org/10.1016/j.ijggc.2012.12.010.
Pełny tekst źródłaGómez-Ballesteros, Miguel, Vanessa Andrés-Guerrero, Francisco Parra, et al. "Amphiphilic Acrylic Nanoparticles Containing the Poloxamer Star Bayfit® 10WF15 as Ophthalmic Drug Carriers." Polymers 11, no. 7 (2019): 1213. http://dx.doi.org/10.3390/polym11071213.
Pełny tekst źródłaSarah Abbas Hussein Al-saeed, Muhammed Mizher Radhi, and Zuhair Numan Hamed. "A Study into the Electrochemical Behavior of Nano Antibiotics as A Promising Treatment for Helicobacter Pylori Infection by Cyclic Voltammetry." Journal of Techniques 4, no. 33 (2022): 12–20. http://dx.doi.org/10.51173/jt.v4i33.548.
Pełny tekst źródłaTatiparti, Katyayani, Samaresh Sau, Kaustubh Gawde, and Arun Iyer. "Copper-Free ‘Click’ Chemistry-Based Synthesis and Characterization of Carbonic Anhydrase-IX Anchored Albumin-Paclitaxel Nanoparticles for Targeting Tumor Hypoxia." International Journal of Molecular Sciences 19, no. 3 (2018): 838. http://dx.doi.org/10.3390/ijms19030838.
Pełny tekst źródłaStiti, Maamar, Alessandro Cecchi, Marouan Rami, et al. "Carbonic Anhydrase Inhibitor Coated Gold Nanoparticles Selectively Inhibit the Tumor-Associated Isoform IX over the Cytosolic Isozymes I and II." Journal of the American Chemical Society 130, no. 48 (2008): 16130–31. http://dx.doi.org/10.1021/ja805558k.
Pełny tekst źródła