Artykuły w czasopismach na temat „CD169”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „CD169”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Bogie, Jeroen FJ, Ellen Boelen, Els Louagie, et al. "CD169 is a marker for highly pathogenic phagocytes in multiple sclerosis." Multiple Sclerosis Journal 24, no. 3 (2017): 290–300. http://dx.doi.org/10.1177/1352458517698759.
Pełny tekst źródłaAffandi, Alsya J., Joanna Grabowska, Katarzyna Olesek, et al. "Selective tumor antigen vaccine delivery to human CD169+antigen-presenting cells using ganglioside-liposomes." Proceedings of the National Academy of Sciences 117, no. 44 (2020): 27528–39. http://dx.doi.org/10.1073/pnas.2006186117.
Pełny tekst źródłavan Dinther, Dieke, Miguel Lopez Venegas, Henrike Veninga, et al. "Activation of CD8+ T Cell Responses after Melanoma Antigen Targeting to CD169+ Antigen Presenting Cells in Mice and Humans." Cancers 11, no. 2 (2019): 183. http://dx.doi.org/10.3390/cancers11020183.
Pełny tekst źródłaTwilhaar, Maarten Nijen, Lucas Czentner Colomo, Joanna Grabowska, et al. "849 Optimization of a GM3-containing liposomal vaccine that delivers antigen to CD169+ splenic macrophages." Journal for ImmunoTherapy of Cancer 8, Suppl 3 (2020): A902. http://dx.doi.org/10.1136/jitc-2020-sitc2020.0849.
Pełny tekst źródłaLudewig, Burkhard, and Luisa Cervantes-Barragan. "CD169+ macrophages take the bullet." Nature Immunology 13, no. 1 (2011): 13–14. http://dx.doi.org/10.1038/ni.2189.
Pełny tekst źródłaNijen Twilhaar, Maarten K., Lucas Czentner, Joanna Grabowska, et al. "Optimization of Liposomes for Antigen Targeting to Splenic CD169+ Macrophages." Pharmaceutics 12, no. 12 (2020): 1138. http://dx.doi.org/10.3390/pharmaceutics12121138.
Pełny tekst źródłaLi, Wei, Yaomei Wang, Huizhi Zhao, et al. "Identification, Isolation and Transcriptome Analyses of Mouse, Rat and Man Erythroblastic Island Central Macrophages." Blood 132, Supplement 1 (2018): 841. http://dx.doi.org/10.1182/blood-2018-99-114188.
Pełny tekst źródłaTopf, Michael C., Larry Harshyne, Madalina Tuluc, et al. "Loss of CD169+ Subcapsular Macrophages during Metastatic Spread of Head and Neck Squamous Cell Carcinoma." Otolaryngology–Head and Neck Surgery 161, no. 1 (2019): 67–73. http://dx.doi.org/10.1177/0194599819829741.
Pełny tekst źródłaGrabowska, Joanna, Dorian A. Stolk, Maarten K. Nijen Twilhaar та ін. "Liposomal Nanovaccine Containing α-Galactosylceramide and Ganglioside GM3 Stimulates Robust CD8+ T Cell Responses via CD169+ Macrophages and cDC1". Vaccines 9, № 1 (2021): 56. http://dx.doi.org/10.3390/vaccines9010056.
Pełny tekst źródłaDoehn, Jan-Moritz, Christoph Tabeling, Robert Biesen, et al. "CD169/SIGLEC1 is expressed on circulating monocytes in COVID-19 and expression levels are associated with disease severity." Infection 49, no. 4 (2021): 757–62. http://dx.doi.org/10.1007/s15010-021-01606-9.
Pełny tekst źródłaFriedrich, Sarah-Kim, Rosa Schmitz, Michael Bergerhausen, et al. "Usp18 Expression in CD169+ Macrophages is Important for Strong Immune Response after Vaccination with VSV-EBOV." Vaccines 8, no. 1 (2020): 142. http://dx.doi.org/10.3390/vaccines8010142.
Pełny tekst źródłaAlvarez, Belén, Paloma Martínez, María Yuste, et al. "Phenotypic and functional heterogeneity of CD169+ and CD163+ macrophages from porcine lymph nodes and spleen." Developmental & Comparative Immunology 44, no. 1 (2014): 44–49. http://dx.doi.org/10.1016/j.dci.2013.11.010.
Pełny tekst źródłaJacobsen, Rebecca, Allison R. Pettit, Liza J. Raggatt, et al. "Mobilizing Doses Of G-CSF Stop Medullary Erythropoiesis By Depleting F4/80+ VCAM1+ ER-HR3+ CD169+ Erythroid-Island Macrophages." Blood 122, no. 21 (2013): 309. http://dx.doi.org/10.1182/blood.v122.21.309.309.
Pełny tekst źródłaBernhard, Caroline A., Christine Ried, Stefan Kochanek, and Thomas Brocker. "CD169+ macrophages are sufficient for priming of CTLs with specificities left out by cross-priming dendritic cells." Proceedings of the National Academy of Sciences 112, no. 17 (2015): 5461–66. http://dx.doi.org/10.1073/pnas.1423356112.
Pełny tekst źródłaGAO, Xin, Philip Boulais, Masato Tanaka, Christopher Richard Marlein, and Paul S. Frenette. "Macrophage Transfer to HSCs Assigns Residence in Bone Marrow." Blood 134, Supplement_1 (2019): 276. http://dx.doi.org/10.1182/blood-2019-123762.
Pełny tekst źródłaMartinez-Pomares, Luisa, and Siamon Gordon. "CD169+ macrophages at the crossroads of antigen presentation." Trends in Immunology 33, no. 2 (2012): 66–70. http://dx.doi.org/10.1016/j.it.2011.11.001.
Pełny tekst źródłaChow, Andrew, Matthew Huggins, Jalal Ahmed, et al. "CD169+ Macrophages Regulate Erythropoiesis Under Homeostasis, Recovery From Erythron Injury and in JAK2V617F-Induced Polycythemia Vera." Blood 120, no. 21 (2012): 80. http://dx.doi.org/10.1182/blood.v120.21.80.80.
Pełny tekst źródłaJang, Hee-Seong, Hamid Rabb, and Babu J. Padanilam. "CD169+ Macrophages: Regulators of Neutrophil Trafficking to Injured Kidneys." Journal of the American Society of Nephrology 26, no. 4 (2014): 769–71. http://dx.doi.org/10.1681/asn.2014090848.
Pełny tekst źródłaHiemstra, Ida H., Marieke R. Beijer, Henrike Veninga, et al. "The identification and developmental requirements of colonic CD169+macrophages." Immunology 142, no. 2 (2014): 269–78. http://dx.doi.org/10.1111/imm.12251.
Pełny tekst źródłaTeo, Yi Juan, See Liang Ng, Keng Wai Mak, et al. "Renal CD169++ resident macrophages are crucial for protection against acute systemic candidiasis." Life Science Alliance 4, no. 5 (2021): e202000890. http://dx.doi.org/10.26508/lsa.202000890.
Pełny tekst źródłaXia, Yuan, Ling-min Tian, Yu Liu, et al. "Low Dose of Cyanidin-3-O-Glucoside Alleviated Dextran Sulfate Sodium–Induced Colitis, Mediated by CD169+ Macrophage Pathway." Inflammatory Bowel Diseases 25, no. 9 (2019): 1510–21. http://dx.doi.org/10.1093/ibd/izz090.
Pełny tekst źródłaChen, Weihsu C., Norihito Kawasaki, Corwin M. Nycholat, et al. "Antigen Delivery to Macrophages Using Liposomal Nanoparticles Targeting Sialoadhesin/CD169." PLoS ONE 7, no. 6 (2012): e39039. http://dx.doi.org/10.1371/journal.pone.0039039.
Pełny tekst źródłaMarmey, Béatrice, Charlotte Boix, Jean-Baptiste Barbaroux, et al. "CD14 and CD169 expression in human lymph nodes and spleen: specific expansion of CD14+CD169− monocyte-derived cells in diffuse large B-cell lymphomas." Human Pathology 37, no. 1 (2006): 68–77. http://dx.doi.org/10.1016/j.humpath.2005.09.016.
Pełny tekst źródłaKaur, Simranpreet, Liza J. Raggatt, Susan M. Millard, et al. "Self-repopulating recipient bone marrow resident macrophages promote long-term hematopoietic stem cell engraftment." Blood 132, no. 7 (2018): 735–49. http://dx.doi.org/10.1182/blood-2018-01-829663.
Pełny tekst źródłaPurtha, Whitney E., Karen A. Chachu, Herbert W. Virgin, and Michael S. Diamond. "Early B-Cell Activation after West Nile Virus Infection Requires Alpha/Beta Interferon but Not Antigen Receptor Signaling." Journal of Virology 82, no. 22 (2008): 10964–74. http://dx.doi.org/10.1128/jvi.01646-08.
Pełny tekst źródłaRen, Y. W., Y. Y. Zhang, N. A. Affara, et al. "The polymorphism analysis of CD169 and CD163 related with the risk of porcine reproductive and respiratory syndrome virus (PRRSV) infection." Molecular Biology Reports 39, no. 11 (2012): 9903–9. http://dx.doi.org/10.1007/s11033-012-1857-8.
Pełny tekst źródłaSeu, Katie Giger, Julien Papoin, Rose Fessler, et al. "Unravelling Macrophage Heterogeneity in Erythroblastic Islands Between Species." Blood 128, no. 22 (2016): 2436. http://dx.doi.org/10.1182/blood.v128.22.2436.2436.
Pełny tekst źródłaXu, Fangda, Asanga Bandara, Hisashi Akiyama, et al. "Membrane-wrapped nanoparticles probe divergent roles of GM3 and phosphatidylserine in lipid-mediated viral entry pathways." Proceedings of the National Academy of Sciences 115, no. 39 (2018): E9041—E9050. http://dx.doi.org/10.1073/pnas.1804292115.
Pełny tekst źródłaHayashi, Yoshihiro, Jieyu Wang, Zefeng Xu, et al. "EPO Signaling Triggers Erythrocytosis By Expanding Erythrocytes and Also Subsets of Macrophages." Blood 128, no. 22 (2016): 542. http://dx.doi.org/10.1182/blood.v128.22.542.542.
Pełny tekst źródłaIkezumi, Yohei, Toshiaki Suzuki, Shinichi Hayafuji, et al. "The sialoadhesin (CD169) expressing a macrophage subset in human proliferative glomerulonephritis." Nephrology Dialysis Transplantation 20, no. 12 (2005): 2704–13. http://dx.doi.org/10.1093/ndt/gfi105.
Pełny tekst źródłaChow, Andrew, Matthew Huggins, Jalal Ahmed, et al. "CD169+ macrophages provide a niche promoting erythropoiesis under homeostasis and stress." Nature Medicine 19, no. 4 (2013): 429–36. http://dx.doi.org/10.1038/nm.3057.
Pełny tekst źródłaZhang, Yi, Jin-Qing Li, Ze-Zhou Jiang, Lian Li, Yan Wu, and Limin Zheng. "CD169 identifies an anti-tumour macrophage subpopulation in human hepatocellular carcinoma." Journal of Pathology 239, no. 2 (2016): 231–41. http://dx.doi.org/10.1002/path.4720.
Pełny tekst źródłaSaunderson, Sarah C., Amy C. Dunn, Paul R. Crocker, and Alexander D. McLellan. "CD169 mediates the capture of exosomes in spleen and lymph node." Blood 123, no. 2 (2014): 208–16. http://dx.doi.org/10.1182/blood-2013-03-489732.
Pełny tekst źródłaCosta-Hurtado, Mar, Alexandre Olvera, Verónica Martinez-Moliner, et al. "Changes in Macrophage Phenotype after Infection of Pigs with Haemophilus parasuis Strains with Different Levels of Virulence." Infection and Immunity 81, no. 7 (2013): 2327–33. http://dx.doi.org/10.1128/iai.00056-13.
Pełny tekst źródłaXu, Haifeng C., Jun Huang, Vishal Khairnar, et al. "Deficiency of the B Cell-Activating Factor Receptor Results in Limited CD169+Macrophage Function during Viral Infection." Journal of Virology 89, no. 9 (2015): 4748–59. http://dx.doi.org/10.1128/jvi.02976-14.
Pełny tekst źródłaSun, Bing, Linda Abadjian, Alexander Monto, Heather Freasier, and Lynn Pulliam. "Hepatitis C Virus Cure in Human Immunodeficiency Virus Coinfection Dampens Inflammation and Improves Cognition Through Multiple Mechanisms." Journal of Infectious Diseases 222, no. 3 (2020): 396–406. http://dx.doi.org/10.1093/infdis/jiaa109.
Pełny tekst źródłaNiu, Pengxia, Sang-Wook Kim, Won-Il Kim, and Kwan-Suk Kim. "Association analyses of DNA polymorphisms in immune-related candidate genes GBP1, GBP2, CD163, and CD169 with porcine growth and meat quality traits." Journal of Biomedical Research 16, no. 2 (2015): 40–46. http://dx.doi.org/10.12729/jbr.2015.16.2.040.
Pełny tekst źródłaRavishankar, B., R. Shinde, H. Liu, et al. "Marginal zone CD169+ macrophages coordinate apoptotic cell-driven cellular recruitment and tolerance." Proceedings of the National Academy of Sciences 111, no. 11 (2014): 4215–20. http://dx.doi.org/10.1073/pnas.1320924111.
Pełny tekst źródłaAsano, Kenichi, Kenta Kikuchi, and Masato Tanaka. "CD169 macrophages regulate immune responses toward particulate materials in the circulating fluid." Journal of Biochemistry 164, no. 2 (2018): 77–85. http://dx.doi.org/10.1093/jb/mvy050.
Pełny tekst źródłaSewald, X., M. S. Ladinsky, P. D. Uchil, et al. "Retroviruses use CD169-mediated trans-infection of permissive lymphocytes to establish infection." Science 350, no. 6260 (2015): 563–67. http://dx.doi.org/10.1126/science.aab2749.
Pełny tekst źródłaJacobsen, Rebecca, Allison Pettit, Valerie Barbier, et al. "Mobilising doses of G-CSF stop medullary erythropoiesis by depleting CD169+ macrophages." Experimental Hematology 41, no. 8 (2013): S59. http://dx.doi.org/10.1016/j.exphem.2013.05.230.
Pełny tekst źródłaGummuluru, S., N. G. P. Ramirez, and H. Akiyama. "CD169-Dependent Cell-Associated HIV-1 Transmission: A Driver of Virus Dissemination." Journal of Infectious Diseases 210, suppl 3 (2014): S641—S647. http://dx.doi.org/10.1093/infdis/jiu442.
Pełny tekst źródłaAsano, Touko, Koji Ohnishi, Takuya Shiota, et al. "CD169-positive sinus macrophages in the lymph nodes determine bladder cancer prognosis." Cancer Science 109, no. 5 (2018): 1723–30. http://dx.doi.org/10.1111/cas.13565.
Pełny tekst źródłaOhnishi, Koji, Yoichi Saito, Yoshihiro Komohara, et al. "Clinical significance of CD169-positive lymph node macrophages in human malignant tumors." Journal of Clinical Oncology 32, no. 15_suppl (2014): 11118. http://dx.doi.org/10.1200/jco.2014.32.15_suppl.11118.
Pełny tekst źródłaGupta, Pravesh, Si Min Lai, Jianpeng Sheng, et al. "Tissue-Resident CD169 + Macrophages Form a Crucial Front Line against Plasmodium Infection." Cell Reports 16, no. 6 (2016): 1749–61. http://dx.doi.org/10.1016/j.celrep.2016.07.010.
Pełny tekst źródłaAsano, Kenichi, Ami Nabeyama, Yasunobu Miyake, et al. "CD169-Positive Macrophages Dominate Antitumor Immunity by Crosspresenting Dead Cell-Associated Antigens." Immunity 34, no. 1 (2011): 85–95. http://dx.doi.org/10.1016/j.immuni.2010.12.011.
Pełny tekst źródłaMuhsin-Sharafaldine, Morad-Remy, Sarah C. Saunderson, Amy C. Dunn, and Alexander D. McLellan. "Melanoma growth and lymph node metastasis is independent of host CD169 expression." Biochemical and Biophysical Research Communications 486, no. 4 (2017): 965–70. http://dx.doi.org/10.1016/j.bbrc.2017.03.138.
Pełny tekst źródłaTacconi, Carlotta, Catharina D. Commerford, Lothar C. Dieterich, et al. "CD169+ lymph node macrophages have protective functions in mouse breast cancer metastasis." Cell Reports 35, no. 2 (2021): 108993. http://dx.doi.org/10.1016/j.celrep.2021.108993.
Pełny tekst źródłaOrtillon, Marine, Remy Coudereau, Martin Cour, et al. "Monocyte CD169 expression in COVID ‐19 patients upon intensive care unit admission." Cytometry Part A 99, no. 5 (2021): 466–71. http://dx.doi.org/10.1002/cyto.a.24315.
Pełny tekst źródłaHamdan, Thamer A., Hilal Bhat, Lamin B. Cham, et al. "Map3k14 as a Regulator of Innate and Adaptive Immune Response during Acute Viral Infection." Pathogens 9, no. 2 (2020): 96. http://dx.doi.org/10.3390/pathogens9020096.
Pełny tekst źródła