Artykuły w czasopismach na temat „Cell Annotation”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Cell Annotation”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Huang, Xiaoqian, Ruiqi Liu, Shiwei Yang, Xiaozhou Chen i Huamei Li. "scAnnoX: an R package integrating multiple public tools for single-cell annotation". PeerJ 12 (28.03.2024): e17184. http://dx.doi.org/10.7717/peerj.17184.
Pełny tekst źródłaVădineanu, Serban, Daniël M. Pelt, Oleh Dzyubachyk i Kees Joost Batenburg. "Reducing Manual Annotation Costs for Cell Segmentation by Upgrading Low-Quality Annotations". Journal of Imaging 10, nr 7 (17.07.2024): 172. http://dx.doi.org/10.3390/jimaging10070172.
Pełny tekst źródłaHia, Nazifa Tasnim, i Sumon Ahmed. "Automatic cell type annotation using supervised classification: A systematic literature review". Systematic Literature Review and Meta-Analysis Journal 3, nr 3 (21.10.2022): 99–108. http://dx.doi.org/10.54480/slrm.v3i3.45.
Pełny tekst źródłaXu, Yang, Simon J. Baumgart, Christian M. Stegmann i Sikander Hayat. "MACA: marker-based automatic cell-type annotation for single-cell expression data". Bioinformatics 38, nr 6 (22.12.2021): 1756–60. http://dx.doi.org/10.1093/bioinformatics/btab840.
Pełny tekst źródłaGill, Jaidip, Abhijit Dasgupta, Brychan Manry i Natasha Markuzon. "Abstract 4927: Combining single-cell ATAC and RNA sequencing for supervised cell annotation". Cancer Research 84, nr 6_Supplement (22.03.2024): 4927. http://dx.doi.org/10.1158/1538-7445.am2024-4927.
Pełny tekst źródłaZhou, Xiao, Miao Gu i Zhen Cheng. "Local Integral Regression Network for Cell Nuclei Detection". Entropy 23, nr 10 (14.10.2021): 1336. http://dx.doi.org/10.3390/e23101336.
Pełny tekst źródłaZhou, Xiao, Miao Gu i Zhen Cheng. "Local Integral Regression Network for Cell Nuclei Detection". Entropy 23, nr 10 (14.10.2021): 1336. http://dx.doi.org/10.3390/e23101336.
Pełny tekst źródłaCheng, Changde, Wenan Chen, Hongjian Jin i Xiang Chen. "A Review of Single-Cell RNA-Seq Annotation, Integration, and Cell–Cell Communication". Cells 12, nr 15 (30.07.2023): 1970. http://dx.doi.org/10.3390/cells12151970.
Pełny tekst źródłaLong, Helen, Richard Reeves i Michelle M. Simon. "Mouse genomic and cellular annotations". Mammalian Genome 33, nr 1 (5.02.2022): 19–30. http://dx.doi.org/10.1007/s00335-021-09936-7.
Pełny tekst źródłaWei, Ziyang, i Shuqin Zhang. "CALLR: a semi-supervised cell-type annotation method for single-cell RNA sequencing data". Bioinformatics 37, Supplement_1 (1.07.2021): i51—i58. http://dx.doi.org/10.1093/bioinformatics/btab286.
Pełny tekst źródłaYuan, Musu, Liang Chen i Minghua Deng. "scMRA: a robust deep learning method to annotate scRNA-seq data with multiple reference datasets". Bioinformatics 38, nr 3 (8.10.2021): 738–45. http://dx.doi.org/10.1093/bioinformatics/btab700.
Pełny tekst źródłaZhao, Zipei, Fengqian Pang, Yaou Liu, Zhiwen Liu i Chuyang Ye. "Positive-unlabeled learning for binary and multi-class cell detection in histopathology images with incomplete annotations". Machine Learning for Biomedical Imaging 1, December 2022 (17.02.2023): 1–30. http://dx.doi.org/10.59275/j.melba.2022-8g31.
Pełny tekst źródłaDoddahonnaiah, Deeksha, Patrick J. Lenehan, Travis K. Hughes, David Zemmour, Enrique Garcia-Rivera, A. J. Venkatakrishnan, Ramakrishna Chilaka i in. "A Literature-Derived Knowledge Graph Augments the Interpretation of Single Cell RNA-seq Datasets". Genes 12, nr 6 (10.06.2021): 898. http://dx.doi.org/10.3390/genes12060898.
Pełny tekst źródłaBarrett, John, i Richard Childs. "Non-myeloablative stem cell transplants. Annotation". British Journal of Haematology 111, nr 1 (październik 2000): 6–17. http://dx.doi.org/10.1046/j.1365-2141.2000.02405.x.
Pełny tekst źródłaLiu, Huaitian, Alexandra Harris, Brittany Jenkins-Lord, Tiffany H. Dorsey, Francis Makokha, Shahin Sayed, Gretchen Gierach i Stefan Ambs. "Abstract LB240: Cell type annotation using singleR with custom reference for single-nucleus multiome data derived from frozen human breast tumors". Cancer Research 84, nr 7_Supplement (5.04.2024): LB240. http://dx.doi.org/10.1158/1538-7445.am2024-lb240.
Pełny tekst źródłaFeng, Zhanying, Xianwen Ren, Yuan Fang, Yining Yin, Chutian Huang, Yimin Zhao i Yong Wang. "scTIM: seeking cell-type-indicative marker from single cell RNA-seq data by consensus optimization". Bioinformatics 36, nr 8 (17.12.2019): 2474–85. http://dx.doi.org/10.1093/bioinformatics/btz936.
Pełny tekst źródłaSun, Hao, Danqi Guo i Zhao Chen. "Mixed-Supervised Learning for Cell Classification". Sensors 25, nr 4 (16.02.2025): 1207. https://doi.org/10.3390/s25041207.
Pełny tekst źródłaTang, Dachao, Cheng Han, Shaofeng Lin, Xiaodan Tan, Weizhi Zhang, Di Peng, Chenwei Wang i Yu Xue. "iPCD: A Comprehensive Data Resource of Regulatory Proteins in Programmed Cell Death". Cells 11, nr 13 (24.06.2022): 2018. http://dx.doi.org/10.3390/cells11132018.
Pełny tekst źródłaLagier, Michael J., Brittany Bowman, Kelsey Brend, Katherine Hobbs, Michael Foggia i Mark McDaniel. "Improved Functional Prediction of Hypothetical Proteins from Listeria monocytogenes 08-5578". Journal of the Iowa Academy of Science 121, nr 1-4 (1.01.2014): 16–27. http://dx.doi.org/10.17833/121-03.1.
Pełny tekst źródłaLachmann, Alexander, Kaeli A. Rizzo, Alon Bartal, Minji Jeon, Daniel J. B. Clarke i Avi Ma’ayan. "PrismEXP: gene annotation prediction from stratified gene-gene co-expression matrices". PeerJ 11 (27.02.2023): e14927. http://dx.doi.org/10.7717/peerj.14927.
Pełny tekst źródłaZhang, Yuexin, Chao Song, Yimeng Zhang, Yuezhu Wang, Chenchen Feng, Jiaxin Chen, Ling Wei i in. "TcoFBase: a comprehensive database for decoding the regulatory transcription co-factors in human and mouse". Nucleic Acids Research 50, nr D1 (30.10.2021): D391—D401. http://dx.doi.org/10.1093/nar/gkab950.
Pełny tekst źródłaLi, Jia, Quanhu Sheng, Yu Shyr i Qi Liu. "scMRMA: single cell multiresolution marker-based annotation". Nucleic Acids Research 50, nr 2 (14.10.2021): e7-e7. http://dx.doi.org/10.1093/nar/gkab931.
Pełny tekst źródłaXiong, Yi-Xuan, Meng-Guo Wang, Luonan Chen i Xiao-Fei Zhang. "Cell-type annotation with accurate unseen cell-type identification using multiple references". PLOS Computational Biology 19, nr 6 (28.06.2023): e1011261. http://dx.doi.org/10.1371/journal.pcbi.1011261.
Pełny tekst źródłaZubair, Asif, Rich Chapple, Sivaraman Natarajan, William C. Wright, Min Pan, Hyeong-Min Lee, Heather Tillman, John Easton i Paul Geeleher. "Abstract 456: Jointly leveraging spatial transcriptomics and deep learning models for image annotation achieves better-than-pathologist performance in cell type identification in tumors". Cancer Research 82, nr 12_Supplement (15.06.2022): 456. http://dx.doi.org/10.1158/1538-7445.am2022-456.
Pełny tekst źródłaTickotsky, Nili, i Moti Moskovitz. "Protein Activation in Periapical Reaction to Iodoform Containing Root Canal Sealer". Journal of Clinical Pediatric Dentistry 41, nr 6 (1.01.2017): 450–55. http://dx.doi.org/10.17796/1053-4628-41.6.6.
Pełny tekst źródłaEnglbrecht, Fabian, Iris E. Ruider i Andreas R. Bausch. "Automatic image annotation for fluorescent cell nuclei segmentation". PLOS ONE 16, nr 4 (16.04.2021): e0250093. http://dx.doi.org/10.1371/journal.pone.0250093.
Pełny tekst źródłaXu, Congmin, Huyun Lu i Peng Qiu. "Comparison of cell type annotation algorithms for revealing immune response of COVID-19". Frontiers in Systems Biology 2 (24.10.2022). http://dx.doi.org/10.3389/fsysb.2022.1026686.
Pełny tekst źródłaHou, Wenpin, i Zhicheng Ji. "Assessing GPT-4 for cell type annotation in single-cell RNA-seq analysis". Nature Methods, 25.03.2024. http://dx.doi.org/10.1038/s41592-024-02235-4.
Pełny tekst źródłaGuo, Qirui, Musu Yuan, Lei Zhang i Minghua Deng. "scPLAN: a hierarchical computational framework for single transcriptomics data annotation, integration and cell-type label refinement". Briefings in Bioinformatics 25, nr 4 (23.05.2024). http://dx.doi.org/10.1093/bib/bbae305.
Pełny tekst źródłaDong, Sherry, Kaiwen Deng i Xiuzhen Huang. "Single-Cell Type Annotation With Deep Learning in 265 Cell Types For Humans". Bioinformatics Advances, 8.04.2024. http://dx.doi.org/10.1093/bioadv/vbae054.
Pełny tekst źródłaAltay, Aybuge, i Martin Vingron. "scATAcat: cell-type annotation for scATAC-seq data". NAR Genomics and Bioinformatics 6, nr 4 (2.07.2024). http://dx.doi.org/10.1093/nargab/lqae135.
Pełny tekst źródłaVu, Ha, i Jason Ernst. "Universal annotation of the human genome through integration of over a thousand epigenomic datasets". Genome Biology 23, nr 1 (6.01.2022). http://dx.doi.org/10.1186/s13059-021-02572-z.
Pełny tekst źródłaLawson, Nathan D., Rui Li, Masahiro Shin, Ann Grosse, Onur Yukselen, Oliver A. Stone, Alper Kucukural i Lihua Zhu. "An improved zebrafish transcriptome annotation for sensitive and comprehensive detection of cell type-specific genes". eLife 9 (24.08.2020). http://dx.doi.org/10.7554/elife.55792.
Pełny tekst źródłaKimmel, Jacob C., i David R. Kelley. "Semisupervised adversarial neural networks for single-cell classification". Genome Research, 24.02.2021. http://dx.doi.org/10.1101/gr.268581.120.
Pełny tekst źródłaMichielsen, Lieke, Mohammad Lotfollahi, Daniel Strobl, Lisa Sikkema, Marcel J. T. Reinders, Fabian J. Theis i Ahmed Mahfouz. "Single-cell reference mapping to construct and extend cell-type hierarchies". NAR Genomics and Bioinformatics 5, nr 3 (5.07.2023). http://dx.doi.org/10.1093/nargab/lqad070.
Pełny tekst źródłaLiu, Yan, Guo Wei, Chen Li, Long-Chen Shen, Robin B. Gasser, Jiangning Song, Dijun Chen i Dong-Jun Yu. "TripletCell: a deep metric learning framework for accurate annotation of cell types at the single-cell level". Briefings in Bioinformatics, 20.04.2023. http://dx.doi.org/10.1093/bib/bbad132.
Pełny tekst źródłaLi, Ziyi, i Hao Feng. "A neural network-based method for exhaustive cell label assignment using single cell RNA-seq data". Scientific Reports 12, nr 1 (18.01.2022). http://dx.doi.org/10.1038/s41598-021-04473-4.
Pełny tekst źródłaZhang, Weihang, Yang Cui, Bowen Liu, Martin Loza, Sung-Joon Park i Kenta Nakai. "HyGAnno: hybrid graph neural network–based cell type annotation for single-cell ATAC sequencing data". Briefings in Bioinformatics 25, nr 3 (27.03.2024). http://dx.doi.org/10.1093/bib/bbae152.
Pełny tekst źródłaVu, Ha, i Jason Ernst. "Universal chromatin state annotation of the mouse genome". Genome Biology 24, nr 1 (27.06.2023). http://dx.doi.org/10.1186/s13059-023-02994-x.
Pełny tekst źródłaFord, Michael K. B., Ananth Hari, Qinghui Zhou, Ibrahim Numanagić i S. Cenk Sahinalp. "Biologically-informed Killer cell immunoglobulin-like receptor (KIR) gene annotation tool". Bioinformatics, 21.10.2024. http://dx.doi.org/10.1093/bioinformatics/btae622.
Pełny tekst źródłaShrestha, Prem, Nicholas Kuang i Ji Yu. "Efficient end-to-end learning for cell segmentation with machine generated weak annotations". Communications Biology 6, nr 1 (2.03.2023). http://dx.doi.org/10.1038/s42003-023-04608-5.
Pełny tekst źródłaGeuenich, Michael J., Dae-won Gong i Kieran R. Campbell. "The impacts of active and self-supervised learning on efficient annotation of single-cell expression data". Nature Communications 15, nr 1 (3.02.2024). http://dx.doi.org/10.1038/s41467-024-45198-y.
Pełny tekst źródłaShi, Yongle, Yibing Ma, Xiang Chen i Jie Gao. "scADCA: An Anomaly Detection-Based scRNA-seq Dataset Cell Type Annotation Method for Identifying Novel Cells". Current Bioinformatics 20 (10.10.2024). http://dx.doi.org/10.2174/0115748936334071240903064630.
Pełny tekst źródłaXiong, Yi-Xuan, i Xiao-Fei Zhang. "scDOT: enhancing single-cell RNA-Seq data annotation and uncovering novel cell types through multi-reference integration". Briefings in Bioinformatics 25, nr 2 (22.01.2024). http://dx.doi.org/10.1093/bib/bbae072.
Pełny tekst źródłaMichielsen, Lieke, Marcel J. T. Reinders i Ahmed Mahfouz. "Hierarchical progressive learning of cell identities in single-cell data". Nature Communications 12, nr 1 (14.05.2021). http://dx.doi.org/10.1038/s41467-021-23196-8.
Pełny tekst źródłaZhang, Ying, Huaicheng Sun, Wei Zhang, Tingting Fu, Shijie Huang, Minjie Mou, Jinsong Zhang i in. "CellSTAR: a comprehensive resource for single-cell transcriptomic annotation". Nucleic Acids Research, 19.10.2023. http://dx.doi.org/10.1093/nar/gkad874.
Pełny tekst źródłaShao, Xin, Haihong Yang, Xiang Zhuang, Jie Liao, Penghui Yang, Junyun Cheng, Xiaoyan Lu, Huajun Chen i Xiaohui Fan. "scDeepSort: a pre-trained cell-type annotation method for single-cell transcriptomics using deep learning with a weighted graph neural network". Nucleic Acids Research, 9.09.2021. http://dx.doi.org/10.1093/nar/gkab775.
Pełny tekst źródłaLee, Sarada M. W., Andrew Shaw, Jodie L. Simpson, David Uminsky i Luke W. Garratt. "Differential cell counts using center-point networks achieves human-level accuracy and efficiency over segmentation". Scientific Reports 11, nr 1 (19.08.2021). http://dx.doi.org/10.1038/s41598-021-96067-3.
Pełny tekst źródłaWang, Yuge, Xingzhi Sun i Hongyu Zhao. "Benchmarking automated cell type annotation tools for single-cell ATAC-seq data". Frontiers in Genetics 13 (13.12.2022). http://dx.doi.org/10.3389/fgene.2022.1063233.
Pełny tekst źródłaQuan, Fei, Xin Liang, Mingjiang Cheng, Huan Yang, Kun Liu, Shengyuan He, Shangqin Sun i in. "Annotation of cell types (ACT): a convenient web server for cell type annotation". Genome Medicine 15, nr 1 (3.11.2023). http://dx.doi.org/10.1186/s13073-023-01249-5.
Pełny tekst źródła