Gotowa bibliografia na temat „Cell Division - Stochastic Simulation”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Cell Division - Stochastic Simulation”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Rozprawy doktorskie na temat "Cell Division - Stochastic Simulation"

1

Morton-Firth, Carl Jason. "Stochastic simulation of cell signalling pathways." Thesis, University of Cambridge, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.625063.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Szekely, Tamas. "Stochastic modelling and simulation in cell biology." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:f9b8dbe6-d96d-414c-ac06-909cff639f8c.

Pełny tekst źródła
Streszczenie:
Modelling and simulation are essential to modern research in cell biology. This thesis follows a journey starting from the construction of new stochastic methods for discrete biochemical systems to using them to simulate a population of interacting haematopoietic stem cell lineages. The first part of this thesis is on discrete stochastic methods. We develop two new methods, the stochastic extrapolation framework and the Stochastic Bulirsch-Stoer methods. These are based on the Richardson extrapolation technique, which is widely used in ordinary differential equation solvers. We believed that it would also be useful in the stochastic regime, and this turned out to be true. The stochastic extrapolation framework is a scheme that admits any stochastic method with a fixed stepsize and known global error expansion. It can improve the weak order of the moments of these methods by cancelling the leading terms in the global error. Using numerical simulations, we demonstrate that this is the case up to second order, and postulate that this also follows for higher order. Our simulations show that extrapolation can greatly improve the accuracy of a numerical method. The Stochastic Bulirsch-Stoer method is another highly accurate stochastic solver. Furthermore, using numerical simulations we find that it is able to better retain its high accuracy for larger timesteps than competing methods, meaning it remains accurate even when simulation time is speeded up. This is a useful property for simulating the complex systems that researchers are often interested in today. The second part of the thesis is concerned with modelling a haematopoietic stem cell system, which consists of many interacting niche lineages. We use a vectorised tau-leap method to examine the differences between a deterministic and a stochastic model of the system, and investigate how coupling niche lineages affects the dynamics of the system at the homeostatic state as well as after a perturbation. We find that larger coupling allows the system to find the optimal steady state blood cell levels. In addition, when the perturbation is applied randomly to the entire system, larger coupling also results in smaller post-perturbation cell fluctuations compared to non-coupled cells. In brief, this thesis contains four main sets of contributions: two new high-accuracy discrete stochastic methods that have been numerically tested, an improvement that can be used with any leaping method that introduces vectorisation as well as how to use a common stepsize adapting scheme, and an investigation of the effects of coupling lineages in a heterogeneous population of haematopoietic stem cell niche lineages.
Style APA, Harvard, Vancouver, ISO itp.
3

Chen, Minghan. "Stochastic Modeling and Simulation of Multiscale Biochemical Systems." Diss., Virginia Tech, 2019. http://hdl.handle.net/10919/90898.

Pełny tekst źródła
Streszczenie:
Numerous challenges arise in modeling and simulation as biochemical networks are discovered with increasing complexities and unknown mechanisms. With the improvement in experimental techniques, biologists are able to quantify genes and proteins and their dynamics in a single cell, which calls for quantitative stochastic models for gene and protein networks at cellular levels that match well with the data and account for cellular noise. This dissertation studies a stochastic spatiotemporal model of the Caulobacter crescentus cell cycle. A two-dimensional model based on a Turing mechanism is investigated to illustrate the bipolar localization of the protein PopZ. However, stochastic simulations are often impeded by expensive computational cost for large and complex biochemical networks. The hybrid stochastic simulation algorithm is a combination of differential equations for traditional deterministic models and Gillespie's algorithm (SSA) for stochastic models. The hybrid method can significantly improve the efficiency of stochastic simulations for biochemical networks with multiscale features, which contain both species populations and reaction rates with widely varying magnitude. The populations of some reactant species might be driven negative if they are involved in both deterministic and stochastic systems. This dissertation investigates the negativity problem of the hybrid method, proposes several remedies, and tests them with several models including a realistic biological system. As a key factor that affects the quality of biological models, parameter estimation in stochastic models is challenging because the amount of empirical data must be large enough to obtain statistically valid parameter estimates. To optimize system parameters, a quasi-Newton algorithm for stochastic optimization (QNSTOP) was studied and applied to a stochastic budding yeast cell cycle model by matching multivariate probability distributions between simulated results and empirical data. Furthermore, to reduce model complexity, this dissertation simplifies the fundamental cooperative binding mechanism by a stochastic Hill equation model with optimized system parameters. Considering that many parameter vectors generate similar system dynamics and results, this dissertation proposes a general α-β-γ rule to return an acceptable parameter region of the stochastic Hill equation based on QNSTOP. Different objective functions are explored targeting different features of the empirical data.<br>Doctor of Philosophy<br>Modeling and simulation of biochemical networks faces numerous challenges as biochemical networks are discovered with increased complexity and unknown mechanisms. With improvement in experimental techniques, biologists are able to quantify genes and proteins and their dynamics in a single cell, which calls for quantitative stochastic models, or numerical models based on probability distributions, for gene and protein networks at cellular levels that match well with the data and account for randomness. This dissertation studies a stochastic model in space and time of a bacterium’s life cycle— Caulobacter. A two-dimensional model based on a natural pattern mechanism is investigated to illustrate the changes in space and time of a key protein population. However, stochastic simulations are often complicated by the expensive computational cost for large and sophisticated biochemical networks. The hybrid stochastic simulation algorithm is a combination of traditional deterministic models, or analytical models with a single output for a given input, and stochastic models. The hybrid method can significantly improve the efficiency of stochastic simulations for biochemical networks that contain both species populations and reaction rates with widely varying magnitude. The populations of some species may become negative in the simulation under some circumstances. This dissertation investigates negative population estimates from the hybrid method, proposes several remedies, and tests them with several cases including a realistic biological system. As a key factor that affects the quality of biological models, parameter estimation in stochastic models is challenging because the amount of observed data must be large enough to obtain valid results. To optimize system parameters, the quasi-Newton algorithm for stochastic optimization (QNSTOP) was studied and applied to a stochastic (budding) yeast life cycle model by matching different distributions between simulated results and observed data. Furthermore, to reduce model complexity, this dissertation simplifies the fundamental molecular binding mechanism by the stochastic Hill equation model with optimized system parameters. Considering that many parameter vectors generate similar system dynamics and results, this dissertation proposes a general α-β-γ rule to return an acceptable parameter region of the stochastic Hill equation based on QNSTOP. Different optimization strategies are explored targeting different features of the observed data.
Style APA, Harvard, Vancouver, ISO itp.
4

Biehler, Eike [Verfasser], Werner [Akademischer Betreuer] Nagel, and Richard [Akademischer Betreuer] Cowan. "Cell division processes in tessellations : a stochastic geometry approach / Eike Biehler. Gutachter: Werner Nagel ; Richard Cowan." Jena : Thüringer Universitäts- und Landesbibliothek Jena, 2012. http://d-nb.info/1029294216/34.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Ahmadian, Mansooreh. "Hybrid Modeling and Simulation of Stochastic Effects on Biochemical Regulatory Networks." Diss., Virginia Tech, 2020. http://hdl.handle.net/10919/99481.

Pełny tekst źródła
Streszczenie:
A complex network of genes and proteins governs the robust progression through cell cycles in the presence of inevitable noise. Stochastic modeling is viewed as a key paradigm to study the effects of intrinsic and extrinsic noise on the dynamics of biochemical networks. A detailed quantitative description of such complex and multiscale networks via stochastic modeling poses several challenges. First, stochastic models generally require extensive computations, particularly when applied to large networks. Second, the accuracy of stochastic models is highly dependent on the quality of the parameter estimation based on experimental observations. The goal of this dissertation is to address these problems by developing new efficient methods for modeling and simulation of stochastic effects in biochemical systems. Particularly, a hybrid stochastic model is developed to represent a detailed molecular mechanism of cell cycle control in budding yeast cells. In a single multiscale model, the proposed hybrid approach combines the advantages of two regimes: 1) the computational efficiency of a deterministic approach, and 2) the accuracy of stochastic simulations. The results show that this hybrid stochastic model achieves high computational efficiency while generating simulation results that match very well with published experimental measurements. Furthermore, a new hierarchical deep classification (HDC) algorithm is developed to address the parameter estimation problem in a monomolecular system. The HDC algorithm adopts a neural network that, via multiple hierarchical search steps, finds reasonably accurate ranges for the model parameters. To train the neural network in the presence of experimental data scarcity, the proposed method leverages the domain knowledge from stochastic simulations to generate labeled training data. The results show that the proposed HDC algorithm yields accurate ranges for the model parameters and highlight the potentials of model-free learning for parameter estimation in stochastic modeling of complex biochemical networks.<br>Doctor of Philosophy<br>Cell cycle is a process in which a growing cell replicates its DNA and divides into two cells. Progression through the cell cycle is regulated by complex interactions between networks of genes, transcripts, and proteins. These interactions inside the confined volume of a cell are subject to inherent noise. To provide a quantitative description of the cell cycle, several deterministic and stochastic models have been developed. However, deterministic models cannot capture the intrinsic noise. In addition, stochastic modeling poses the following challenges. First, stochastic models generally require extensive computations, particularly when applied to large networks. Second, the accuracy of stochastic models is highly dependent on the accuracy of the estimated model parameters. The goal of this dissertation is to address these challenges by developing new efficient methods for modeling and simulation of stochastic effects in biochemical networks. The results show that the proposed hybrid model that combines stochastic and deterministic modeling approaches can achieve high computational efficiency while generating accurate simulation results. Moreover, a new machine learning-based method is developed to address the parameter estimation problem in biochemical systems. The results show that the proposed method yields accurate ranges for the model parameters and highlight the potentials of model-free learning for parameter estimation in stochastic modeling of complex biochemical networks.
Style APA, Harvard, Vancouver, ISO itp.
6

Charlebois, Daniel A. "An algorithm for the stochastic simulation of gene expression and cell population dynamics." Thesis, University of Ottawa (Canada), 2010. http://hdl.handle.net/10393/28755.

Pełny tekst źródła
Streszczenie:
Over the past few years, it has been increasingly recognized that stochastic mechanisms play a key role in the dynamics of biological systems. Genetic networks are one example where molecular-level fluctuations are of particular importance. Here stochasticity in the expression of gene products can result in genetically identical cells in the same environment displaying significant variation in biochemical or physical attributes. This variation can influence individual and population-level fitness. In this thesis we first explore the background required to obtain analytical solutions and perform simulations of stochastic models of gene expression. Then we develop an algorithm for the stochastic simulation of gene expression and heterogeneous cell population dynamics. The algorithm combines an exact method to simulate molecular-level fluctuations in single cells and a constant-number Monte Carlo approach to simulate the statistical characteristics of growing cell populations. This approach permits biologically realistic and computationally feasible simulations of environment and time-dependent cell population dynamics. The algorithm is benchmarked against steady-state and time-dependent analytical solutions of gene expression models, including scenarios when cell growth, division, and DNA replication are incorporated into the modelling framework. Furthermore, using the algorithm we obtain the steady-state cell size distribution of a large cell population, grown from a small initial cell population undergoing stochastic and asymmetric division, to the size distribution of a small representative sample of this population simulated to steady-state. These comparisons demonstrate that the algorithm provides an accurate and efficient approach to modelling the effects of complex biological features on gene expression dynamics. The algorithm is also employed to simulate expression dynamics within 'bet-hedging' cell populations during their adaption to environmental stress. These simulations indicate that the cell population dynamics algorithm provides a framework suitable for simulating and analyzing realistic models of heterogeneous population dynamics combining molecular-level stochastic reaction kinetics, relevant physiological details, and phenotypic variability and fitness.
Style APA, Harvard, Vancouver, ISO itp.
7

Wang, Shuo. "Analysis and Application of Haseltine and Rawlings's Hybrid Stochastic Simulation Algorithm." Diss., Virginia Tech, 2016. http://hdl.handle.net/10919/82717.

Pełny tekst źródła
Streszczenie:
Stochastic effects in cellular systems are usually modeled and simulated with Gillespie's stochastic simulation algorithm (SSA), which follows the same theoretical derivation as the chemical master equation (CME), but the low efficiency of SSA limits its application to large chemical networks. To improve efficiency of stochastic simulations, Haseltine and Rawlings proposed a hybrid of ODE and SSA algorithm, which combines ordinary differential equations (ODEs) for traditional deterministic models and SSA for stochastic models. In this dissertation, accuracy analysis, efficient implementation strategies, and application of of Haseltine and Rawlings's hybrid method (HR) to a budding yeast cell cycle model are discussed. Accuracy of the hybrid method HR is studied based on a linear chain reaction system, motivated from the modeling practice used for the budding yeast cell cycle control mechanism. Mathematical analysis and numerical results both show that the hybrid method HR is accurate if either numbers of molecules of reactants in fast reactions are above certain thresholds, or rate constants of fast reactions are much larger than rate constants of slow reactions. Our analysis also shows that the hybrid method HR allows for a much greater region in system parameter space than those for the slow scale SSA (ssSSA) and the stochastic quasi steady state assumption (SQSSA) method. Implementation of the hybrid method HR requires a stiff ODE solver for numerical integration and an efficient event-handling strategy for slow reaction firings. In this dissertation, an event-handling strategy is developed based on inverse interpolation. Performances of five wildly used stiff ODE solvers are measured in three numerical experiments. Furthermore, inspired by the strategy of the hybrid method HR, a hybrid of ODE and SSA stochastic models for the budding yeast cell cycle is developed, based on a deterministic model in the literature. Simulation results of this hybrid model match very well with biological experimental data, and this model is the first to do so with these recently available experimental data. This study demonstrates that the hybrid method HR has great potential for stochastic modeling and simulation of large biochemical networks.<br>Ph. D.
Style APA, Harvard, Vancouver, ISO itp.
8

Joubaud, Maud. "Processus de Markov déterministes par morceaux branchants et problème d’arrêt optimal, application à la division cellulaire." Thesis, Montpellier, 2019. http://www.theses.fr/2019MONTS031/document.

Pełny tekst źródła
Streszczenie:
Les processus markoviens déterministes par morceaux (PDMP) forment une vaste classe de processus stochastiques caractérisés par une évolution déterministe entre des sauts à mécanisme aléatoire. Ce sont des processus de type hybride, avec une composante discrète de mode et une composante d’état qui évolue dans un espace continu. Entre les sauts du processus, la composante continue évolue de façon déterministe, puis au moment du saut un noyau markovien sélectionne la nouvelle valeur des composantes discrète et continue. Dans cette thèse, nous construisons des PDMP évoluant dans des espaces de mesures (de dimension infinie), pour modéliser des population de cellules en tenant compte des caractéristiques individuelles de chaque cellule. Nous exposons notre construction des PDMP sur des espaces de mesure, et nous établissons leur caractère markovien. Sur ces processus à valeur mesure, nous étudions un problème d'arrêt optimal. Un problème d'arrêt optimal revient à choisir le meilleur temps d'arrêt pour optimiser l'espérance d'une certaine fonctionnelle de notre processus, ce qu'on appelle fonction valeur. On montre que cette fonction valeur est solution des équations de programmation dynamique et on construit une famille de temps d'arrêt $epsilon$-optimaux. Dans un second temps, nous nous intéressons à un PDMP en dimension finie, le TCP, pour lequel on construit un schéma d'Euler afin de l'approcher. Ce choix de modèle simple permet d'estimer différents types d'erreurs. Nous présentons des simulations numériques illustrant les résultats obtenus<br>Piecewise deterministic Markov processes (PDMP) form a large class of stochastic processes characterized by a deterministic evolution between random jumps. They fall into the class of hybrid processes with a discrete mode and an Euclidean component (called the state variable). Between the jumps, the continuous component evolves deterministically, then a jump occurs and a Markov kernel selects the new value of the discrete and continuous components. In this thesis, we extend the construction of PDMPs to state variables taking values in some measure spaces with infinite dimension. The aim is to model cells populations keeping track of the information about each cell. We study our measured-valued PDMP and we show their Markov property. With thoses processes, we study a optimal stopping problem. The goal of an optimal stopping problem is to find the best admissible stopping time in order to optimize some function of our process. We show that the value fonction can be recursively constructed using dynamic programming equations. We construct some $epsilon$-optimal stopping times for our optimal stopping problem. Then, we study a simple finite-dimension real-valued PDMP, the TCP process. We use Euler scheme to approximate it, and we estimate some types of errors. We illustrate the results with numerical simulations
Style APA, Harvard, Vancouver, ISO itp.
9

Dao, Duc Khanh. "Modeling and analysis of neuronal networks, stochastic chemical reactions in cellular micro-domains and telomere dynamics." Paris 6, 2013. http://www.theses.fr/2013PA066513.

Pełny tekst źródła
Streszczenie:
Nous modélisons différents évènements aléatoires intervenant en biologie. Dans une première partie, on étudie certaines propriétés de populations de neurones. En utilisant un modèle de facilitation dépression synaptique, on étudie le phénomène de bursts synchrones observés à différentes échelles de populations. On étudie ensuite la transition entre état haut et bas de neurones induite par le bruit. Afin de comprendre le phénomène d’oscillations du temps de séjour dans l’état haut, onétudie le problème de premier temps de passage pour une classe de processus stochastiquesdans un domaine avec un attracteur situé près d’un cycle limite. On construit une classede systèmes conjugués à celui de Hopf que l’on étudie via les méthodes d’approximations WKB et couche limite. On s’intéresse enfin aux interactions entre neurones et astrocytes, et plus spécifiquement à l’intégration du potassium. En introduisant un modèle à trois compartiments, on simule les dynamiques du potassium pour différents protocoles de stimulations pour déterminer comment les canaux astrocytaires influencent la neurotransmission. Dans une deuxième partie, on s’intéresse au temps d’atteinte d’un seuil pour des réactions. Les méthodes introduites sont ensuite utilisées pour étudier le contrôle du fuseau mitotique et la régulation posttranscriptionnellede l’expression génétique dans le noyau et le cytoplasme. Dans la troisième partie, on modélise la dynamique stochastique des longueurs de télomères après chaque division cellulaire. En étudiant le processus de drift et saut associé, on prédit la distribution stationnaire ainsi que la longueur du télomère le plus court d’une cellule<br>In this PhD, we model specific stochastic events occurring in different biological contexts. In the first part, we study three different properties of neural networks. Using a mean field facilitation-depression synaptic model, we unravel the synchronous long lasting bursting observed at various scales of neural populations. Next, we study the neuronal noise induced transition between Up&amp; Down states. To study the oscillatory peaks of the time spent in Up state, we consider the exit problem for a class of stochastic processes in a domain with an attractor located close to a limit cycle. We construct a class of systems conjugate to the Hopf bifurcation system that we study using WKB approximation and boundary layer analysis. We finally focus on neuroglial interactions and more specifically on astrocytic potassium. Using a tri-compartment model, we simulate the potassium dynamics for different stimulation protocols and we determine how astrocytic channels can influence neurotransmission. In the second part, we focus on the threshold activation for stochastic chemical reactions in cellular micro-domains. We compute the probability and the mean first time to reach a threshold for different reactions. The methods are applied to study the mitotic spindle checkpoint and the problem of gene expression and post-transcriptional regulation. The third part is finally dedicated to the stochastic dynamics of telomere length across cell divisions. We model the dynamics of telomere length as a drift and jump process, which allows predicting the distribution of telomere length and the length of the shortest telomere
Style APA, Harvard, Vancouver, ISO itp.
10

Wollrab, Viktoria. "Active gels in vivo : patterns and dynamics in cytokinetic rings and their functions in cell division." Thesis, Strasbourg, 2014. http://www.theses.fr/2014STRAF027/document.

Pełny tekst źródła
Streszczenie:
Les structures d'acto-myosine sont impliquées dans de nombreuses fonctions cellulaires. Comprendre leur organisation et leur comportement collectif est toujours difficile. Nous avons étudié l'anneau cytokinétique dans les cellules de mammifères et dans les levures de fission, en orientant les cellules dans les microcavités, ce qui permet de voir l'anneau dans un seul plan focal. Avec cette configuration, nous révélons de nouvelles structures et des dynamiques distinctes pour les deux systèmes cellulaires. Dans les cellules de mammifères, nous trouvons des motifs réguliers de la myosine et la formine. Les caractéristiques de ces motifs sont stables tout au long de sa fermeture et leur apparition coïncide avec la constriction. Nous proposons que ce phénomène est une propriété inhérente du réseau d'acto-myosine et que la formation de ces motifs entraîne une augmentation du stress. Ces hypothèses sont confirmées par notre modèle en champ moyen. Par contraste, l'anneau de levure de fission montre des inhomogénéités tournantes de l'actine, de la myosine, des protéines de la construction de la paroi (Bgs) et d'autres protéines. La dynamique des inhomogénéités de myosine est inchangée, si la croissance de la paroi est inhibée. Cependant, l'inhibition du mouvement des inhomogénéités conduit à l'arrêt de la fermeture. Nous proposons que la fermeture de l'anneau est entraînée par la rotation de l'actine et de la myosine qui tirent des protéines Bgs, lesquelles construisent ainsi le septum. Cette hypothèse est confirmée par nos calculs et par des simulations numériques. Nous suggérons que la transition entre les états de différents ordres et dynamiques pourrait être une façon de réguler in vivo les systèmes d'acto-myosine<br>Actomyosin structures are involved in many cell functions. Understanding their organization and collective behavior is still challenging. We study the cytokinetic ring in mammalian cells and in fission yeasts, by orienting cells in microcavities. This allows seeing the ring in a single plane of focus. With this setup, we reveal new structures and distinct dynamics for both cellular systems. In mammalian cells we find a pattern of regular clusters of myosin and formin. The characteristics of this pattern are stable throughout closure and its formation coincides with the onset of constriction. We propose that its characteristic is an inherent property of the actomyosin network and that its formation leads to an increase in stress generation. These hypotheses are supported by our theoretical mean field model. In contrast, fission yeast rings show rotating inhomogeneities (speckles), i.e. rotations of actin, myosin, cell wall building proteins (Bgs) and other proteins. Myosin speckles dynamic is unchanged, if wall growth is inhibited. However, the inhibition of speckle motion leads to stalled closure. We propose that the ring closure is driven by the rotation of actin and myosin, which pull Bgs thereby building the septum. This model is supported by our calculations and by numerical simulations. We suggest that the transition between states of different orders and dynamics might be a way to regulate actomyosin systems in vivo
Style APA, Harvard, Vancouver, ISO itp.
Więcej źródeł
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!