Artykuły w czasopismach na temat „Cerebral Arteriole”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Cerebral Arteriole”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Baker, Wesley B., Ashwin B. Parthasarathy, Kimberly P. Gannon, Venkaiah C. Kavuri, David R. Busch, Kenneth Abramson, Lian He i in. "Noninvasive optical monitoring of critical closing pressure and arteriole compliance in human subjects". Journal of Cerebral Blood Flow & Metabolism 37, nr 8 (25.05.2017): 2691–705. http://dx.doi.org/10.1177/0271678x17709166.
Pełny tekst źródłaXi, Qi, Edward Umstot, Guiling Zhao, Damodaran Narayanan, Charles W. Leffler i Jonathan H. Jaggar. "Glutamate regulates Ca2+ signals in smooth muscle cells of newborn piglet brain slice arterioles through astrocyte- and heme oxygenase-dependent mechanisms". American Journal of Physiology-Heart and Circulatory Physiology 298, nr 2 (luty 2010): H562—H569. http://dx.doi.org/10.1152/ajpheart.00823.2009.
Pełny tekst źródłaLiang, Guo Hua, Adebowale Adebiyi, M. Dennis Leo, Elizabeth M. McNally, Charles W. Leffler i Jonathan H. Jaggar. "Hydrogen sulfide dilates cerebral arterioles by activating smooth muscle cell plasma membrane KATP channels". American Journal of Physiology-Heart and Circulatory Physiology 300, nr 6 (czerwiec 2011): H2088—H2095. http://dx.doi.org/10.1152/ajpheart.01290.2010.
Pełny tekst źródłaWu, Xu-Dong, Chen Wang, Zhen-Ying Zhang, Yan Fu, Feng-Ying Liu i Xiu-Hua Liu. "PuerarinAttenuates Cerebral Damage by Improving Cerebral Microcirculation in Spontaneously Hypertensive Rats". Evidence-Based Complementary and Alternative Medicine 2014 (2014): 1–7. http://dx.doi.org/10.1155/2014/408501.
Pełny tekst źródłaBeard, Daniel J., Damian D. McLeod, Caitlin L. Logan, Lucy A. Murtha, Mohammad S. Imtiaz, Dirk F. van Helden i Neil J. Spratt. "Intracranial Pressure Elevation Reduces Flow through Collateral Vessels and the Penetrating Arterioles they Supply. a Possible Explanation for ‘Collateral Failure’ and Infarct Expansion after Ischemic Stroke". Journal of Cerebral Blood Flow & Metabolism 35, nr 5 (11.02.2015): 861–72. http://dx.doi.org/10.1038/jcbfm.2015.2.
Pełny tekst źródłaGanjoo, Pragati, Neil E. Farber, Antal Hudetz, Jeremy J. Smith, Enric Samso, John P. Kampine i William T. Schmeling. "In Vivo Effects of Dexmedetomidine on Laser-Doppler Flow and Pial Arteriolar Diameter". Anesthesiology 88, nr 2 (1.02.1998): 429–39. http://dx.doi.org/10.1097/00000542-199802000-00022.
Pełny tekst źródłaIddings, Jennifer A., Ki Jung Kim, Yiqiang Zhou, Haruki Higashimori i Jessica A. Filosa. "Enhanced Parenchymal Arteriole Tone and Astrocyte Signaling Protect Neurovascular Coupling Mediated Parenchymal Arteriole Vasodilation in the Spontaneously Hypertensive Rat". Journal of Cerebral Blood Flow & Metabolism 35, nr 7 (11.03.2015): 1127–36. http://dx.doi.org/10.1038/jcbfm.2015.31.
Pełny tekst źródłaQi, Yujia, i Marcus Roper. "Control of low flow regions in the cortical vasculature determines optimal arterio-venous ratios". Proceedings of the National Academy of Sciences 118, nr 34 (19.08.2021): e2021840118. http://dx.doi.org/10.1073/pnas.2021840118.
Pełny tekst źródłaAsano, Y., R. C. Koehler, T. Kawaguchi i R. W. McPherson. "Pial arteriolar constriction to alpha 2-adrenergic agonist dexmedetomidine in the rat". American Journal of Physiology-Heart and Circulatory Physiology 272, nr 6 (1.06.1997): H2547—H2556. http://dx.doi.org/10.1152/ajpheart.1997.272.6.h2547.
Pełny tekst źródłaIliff, Jeffrey J., Raimondo D'Ambrosio, Al C. Ngai i H. Richard Winn. "Adenosine receptors mediate glutamate-evoked arteriolar dilation in the rat cerebral cortex". American Journal of Physiology-Heart and Circulatory Physiology 284, nr 5 (1.05.2003): H1631—H1637. http://dx.doi.org/10.1152/ajpheart.00909.2002.
Pełny tekst źródłaChen, Xuming, Yuanyuan Jiang, Sangcheon Choi, Rolf Pohmann, Klaus Scheffler, David Kleinfeld i Xin Yu. "Assessment of single-vessel cerebral blood velocity by phase contrast fMRI". PLOS Biology 19, nr 9 (9.09.2021): e3000923. http://dx.doi.org/10.1371/journal.pbio.3000923.
Pełny tekst źródłaShih, Andy Y., Beth Friedman, Patrick K. Drew, Philbert S. Tsai, Patrick D. Lyden i David Kleinfeld. "Active Dilation of Penetrating Arterioles Restores Red Blood Cell Flux to Penumbral Neocortex after Focal Stroke". Journal of Cerebral Blood Flow & Metabolism 29, nr 4 (28.01.2009): 738–51. http://dx.doi.org/10.1038/jcbfm.2008.166.
Pełny tekst źródłaTouzani, Omar, Samuel Galbraith, Peter Siegl i James McCulloch. "Endothelin-B Receptors in Cerebral Resistance Arterioles and their Functional Significance after Focal Cerebral Ischemia in Cats". Journal of Cerebral Blood Flow & Metabolism 17, nr 11 (listopad 1997): 1157–65. http://dx.doi.org/10.1097/00004647-199711000-00004.
Pełny tekst źródłaDagro, Amy M., i K. T. Ramesh. "A mechanism for injury through cerebral arteriole inflation". Biomechanics and Modeling in Mechanobiology 18, nr 3 (2.01.2019): 651–63. http://dx.doi.org/10.1007/s10237-018-01107-z.
Pełny tekst źródłaKnecht, Kenneth R., Sarah Milam, Daniel A. Wilkinson, Alexander L. Fedinec i Charles W. Leffler. "Time-dependent action of carbon monoxide on the newborn cerebrovascular circulation". American Journal of Physiology-Heart and Circulatory Physiology 299, nr 1 (lipiec 2010): H70—H75. http://dx.doi.org/10.1152/ajpheart.00258.2010.
Pełny tekst źródłaSaesue, Prajak, Tetsuyoshi Horiuchi, Tetsuya Goto, Yuichiro Tanaka i Kazuhiro Hongo. "Functional role of the Na+/H+ exchanger in the regulation of cerebral arteriolar tone in rats". Journal of Neurosurgery 101, nr 2 (sierpień 2004): 330–35. http://dx.doi.org/10.3171/jns.2004.101.2.0330.
Pełny tekst źródłaPinard, Elisabeth, Nicolas Engrand i Jacques Seylaz. "Dynamic Cerebral Microcirculatory Changes in Transient Forebrain Ischemia in Rats: Involvement of Type I Nitric Oxide Synthase". Journal of Cerebral Blood Flow & Metabolism 20, nr 12 (grudzień 2000): 1648–58. http://dx.doi.org/10.1097/00004647-200012000-00004.
Pełny tekst źródłaHoriuchi, Tetsuyoshi, Hans H. Dietrich, Shinichiro Tsugane i Ralph G. Dacey. "Analysis of purine- and pyrimidine-induced vascular responses in the isolated rat cerebral arteriole". American Journal of Physiology-Heart and Circulatory Physiology 280, nr 2 (1.02.2001): H767—H776. http://dx.doi.org/10.1152/ajpheart.2001.280.2.h767.
Pełny tekst źródłaDiaz-Otero, Janice M., Ting-Chieh Yen, Courtney Fisher, Daniel Bota, William F. Jackson i Anne M. Dorrance. "Mineralocorticoid receptor antagonism improves parenchymal arteriole dilation via a TRPV4-dependent mechanism and prevents cognitive dysfunction in hypertension". American Journal of Physiology-Heart and Circulatory Physiology 315, nr 5 (1.11.2018): H1304—H1315. http://dx.doi.org/10.1152/ajpheart.00207.2018.
Pełny tekst źródłaCopeland, J. R., K. A. Willoughby, T. M. Tynan, S. F. Moore i E. F. Ellis. "Endothelial and nonendothelial cyclooxygenase mediate rabbit pial arteriole dilation by bradykinin". American Journal of Physiology-Heart and Circulatory Physiology 268, nr 1 (1.01.1995): H458—H466. http://dx.doi.org/10.1152/ajpheart.1995.268.1.h458.
Pełny tekst źródłaTULLY, B., i Y. VENTIKOS. "Cerebral water transport using multiple-network poroelastic theory: application to normal pressure hydrocephalus". Journal of Fluid Mechanics 667 (16.11.2010): 188–215. http://dx.doi.org/10.1017/s0022112010004428.
Pełny tekst źródłaLiang, Guo Hua, Qi Xi, Charles W. Leffler i Jonathan H. Jaggar. "Hydrogen sulfide activates Ca2+sparks to induce cerebral arteriole dilatation". Journal of Physiology 590, nr 11 (31.05.2012): 2709–20. http://dx.doi.org/10.1113/jphysiol.2011.225128.
Pełny tekst źródłaSharan, Maithili, Eugene P. Vovenko, Arjun Vadapalli, Aleksander S. Popel i Roland N. Pittman. "Experimental and Theoretical Studies of Oxygen Gradients in Rat Pial Microvessels". Journal of Cerebral Blood Flow & Metabolism 28, nr 9 (28.05.2008): 1597–604. http://dx.doi.org/10.1038/jcbfm.2008.51.
Pełny tekst źródłaLi, Yao, i Joseph E. Brayden. "Rho kinase activity governs arteriolar myogenic depolarization". Journal of Cerebral Blood Flow & Metabolism 37, nr 1 (22.07.2016): 140–52. http://dx.doi.org/10.1177/0271678x15621069.
Pełny tekst źródłaLiang, Guohua, Qi xi, Charles Leffler i Jonathan Jaggar. "P6 Hydrogen sulfide activates Ca2+ sparks to induce cerebral arteriole dilation". Nitric Oxide 27 (wrzesień 2012): S13—S14. http://dx.doi.org/10.1016/j.niox.2012.08.007.
Pełny tekst źródłaBauser-Heaton, Holly D., i H. Glenn Bohlen. "Cerebral microvascular dilation during hypotension and decreased oxygen tension: a role for nNOS". American Journal of Physiology-Heart and Circulatory Physiology 293, nr 4 (październik 2007): H2193—H2201. http://dx.doi.org/10.1152/ajpheart.00190.2007.
Pełny tekst źródłaHauck, Erik F., Sebastian Apostel, Julie F. Hoffmann, Axel Heimann i Oliver Kempski. "Capillary Flow and Diameter Changes during Reperfusion after Global Cerebral Ischemia Studied by Intravital Video Microscopy". Journal of Cerebral Blood Flow & Metabolism 24, nr 4 (kwiecień 2004): 383–91. http://dx.doi.org/10.1097/00004647-200404000-00003.
Pełny tekst źródłaGolding, Elke M., Claudia S. Robertson, Jane C. K. Fitch, J. Clay Goodman i Robert M. Bryan. "Segmental Vascular Resistance after Mild Controlled Cortical Impact Injury in the Rat". Journal of Cerebral Blood Flow & Metabolism 23, nr 2 (luty 2003): 210–18. http://dx.doi.org/10.1097/01.wcb.0000044739.64940.b5.
Pełny tekst źródłaTakayasu, Masakazu, i Ralph G. Dacey. "Spontaneous tone of cerebral parenchymal arterioles: a role in cerebral hyperemic phenomena". Journal of Neurosurgery 71, nr 5 (listopad 1989): 711–17. http://dx.doi.org/10.3171/jns.1989.71.5.0711.
Pełny tekst źródłaHarraz, Osama F., Thomas A. Longden, Fabrice Dabertrand, David Hill-Eubanks i Mark T. Nelson. "Endothelial GqPCR activity controls capillary electrical signaling and brain blood flow through PIP2 depletion". Proceedings of the National Academy of Sciences 115, nr 15 (26.03.2018): E3569—E3577. http://dx.doi.org/10.1073/pnas.1800201115.
Pełny tekst źródłaNot Available, Not Available. "Astrocytes act as signal transducer in neuronal activation and cerebral arteriole vasodilation". Journal of Neurology 250, nr 3 (1.03.2003): 384–86. http://dx.doi.org/10.1007/s004150300013.
Pełny tekst źródłaShibata, M., C. W. Leffler i D. W. Busija. "Prostanoids attenuate pial arteriolar dilation induced by cortical spreading depression in rabbits". American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 261, nr 4 (1.10.1991): R828—R834. http://dx.doi.org/10.1152/ajpregu.1991.261.4.r828.
Pełny tekst źródłaNakahata, Katsutoshi, Hiroyuki Kinoshita, Yusei Hirano, Yoshiki Kimoto, Hiroshi Iranami i Yoshio Hatano. "Mild Hypercapnia Induces Vasodilation via Adenosine Triphosphate-sensitive K+Channels in Parenchymal Microvessels of the Rat Cerebral Cortex". Anesthesiology 99, nr 6 (1.12.2003): 1333–39. http://dx.doi.org/10.1097/00000542-200312000-00014.
Pełny tekst źródłaKrsmanovic, Zeljko, Evica Dincic, Smiljana Kostic, Vesna Lackovic, Milos Bajcetic, Maja Lackovic, Zeljko Boskovic i Ranko Raicevic. "Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy". Vojnosanitetski pregled 68, nr 5 (2011): 455–59. http://dx.doi.org/10.2298/vsp1105455k.
Pełny tekst źródłaZhao, Dong, Yezhong Wang, Xuejun He, Luna Liu, Qi Liu, Hui Xu, Yunxiang Ji, Licang Zhu, Ganggang Wang i Jian Xu. "Correlation between Arteriole Membrane Potential and Cerebral Vasospasm after Subarachnoid Hemorrhage in Rats". Neurology India 68, nr 2 (2020): 327. http://dx.doi.org/10.4103/0028-3886.280652.
Pełny tekst źródłaLongden, Thomas A., David C. Hill-Eubanks i Mark T. Nelson. "Ion channel networks in the control of cerebral blood flow". Journal of Cerebral Blood Flow & Metabolism 36, nr 3 (9.11.2015): 492–512. http://dx.doi.org/10.1177/0271678x15616138.
Pełny tekst źródłaDacey, Ralph G., John E. Bassett i Masakazu Takayasu. "Vasomotor Responses of Rat Intracerebral Arterioles to Vasoactive Intestinal Peptide, Substance P, Neuropeptide Y, and Bradykinin". Journal of Cerebral Blood Flow & Metabolism 8, nr 2 (kwiecień 1988): 254–61. http://dx.doi.org/10.1038/jcbfm.1988.56.
Pełny tekst źródłaTóth, Réka, Attila E. Farkas, István A. Krizbai, Péter Makra, Ferenc Bari, Eszter Farkas i Ákos Menyhárt. "Astrocyte Ca2+ Waves and Subsequent Non-Synchronized Ca2+ Oscillations Coincide with Arteriole Diameter Changes in Response to Spreading Depolarization". International Journal of Molecular Sciences 22, nr 7 (26.03.2021): 3442. http://dx.doi.org/10.3390/ijms22073442.
Pełny tekst źródłaZhang, Hua, Pranay Prabhakar, Robert Sealock i James E. Faber. "Wide Genetic Variation in the Native Pial Collateral Circulation is a Major Determinant of Variation in Severity of Stroke". Journal of Cerebral Blood Flow & Metabolism 30, nr 5 (3.02.2010): 923–34. http://dx.doi.org/10.1038/jcbfm.2010.10.
Pełny tekst źródłaMigrino, Raymond Q., Seth Truran, Nina Karamanova, Geidy E. Serrano, Calvin Madrigal, Hannah A. Davies, Jillian Madine, Peter Reaven i Thomas G. Beach. "Human cerebral collateral arteriole function in subjects with normal cognition, mild cognitive impairment, and dementia". American Journal of Physiology-Heart and Circulatory Physiology 315, nr 2 (1.08.2018): H284—H290. http://dx.doi.org/10.1152/ajpheart.00206.2018.
Pełny tekst źródłaPritchard, Harry A. T., Paulo W. Pires, Evan Yamasaki, Pratish Thakore i Scott Earley. "Nanoscale remodeling of ryanodine receptor cluster size underlies cerebral microvascular dysfunction in Duchenne muscular dystrophy". Proceedings of the National Academy of Sciences 115, nr 41 (4.09.2018): E9745—E9752. http://dx.doi.org/10.1073/pnas.1804593115.
Pełny tekst źródłaTaylor, Zachary J., Edward S. Hui, Ashley N. Watson, Xingju Nie, Rachael L. Deardorff, Jens H. Jensen, Joseph A. Helpern i Andy Y. Shih. "Microvascular basis for growth of small infarcts following occlusion of single penetrating arterioles in mouse cortex". Journal of Cerebral Blood Flow & Metabolism 36, nr 8 (13.10.2015): 1357–73. http://dx.doi.org/10.1177/0271678x15608388.
Pełny tekst źródłaRupin, Alain, Frédéric Martin, Marie-Odile Vallez, Edith Bonhomme i Tony Verbeuren. "Inactivation of Plasminogen Activator Inhibitor-1 Accelerates Thrombolysis of a Platelet-rich Thrombus in Rat Mesenteric Arterioles". Thrombosis and Haemostasis 86, nr 12 (2001): 1528–31. http://dx.doi.org/10.1055/s-0037-1616758.
Pełny tekst źródłael Gibaly, Ahmed, Omar A. El-Bassiouny, Omar Diaa, Ali I. Shehata, Tamer Hassan i Khalid M. Saqr. "Effects of Non-Newtonian Viscosity on the Hemodynamics of Cerebral Aneurysms". Applied Mechanics and Materials 819 (styczeń 2016): 366–70. http://dx.doi.org/10.4028/www.scientific.net/amm.819.366.
Pełny tekst źródłaMisaki, Toshinari, Yoh-ichi Satoh, Tomoyuki Saino, Takashi Kuroda, Kazuki Masu, D. A. Russa i Akira Ogawa. "Immunohistochemical localization of protease-activated receptors in cerebral and testicular arterioles of rats: their dependence on arteriole size and organ-specificity". Archives of Histology and Cytology 71, nr 3 (2008): 179–84. http://dx.doi.org/10.1679/aohc.71.179.
Pełny tekst źródłaHaydon, Philip G., i Giorgio Carmignoto. "Astrocyte Control of Synaptic Transmission and Neurovascular Coupling". Physiological Reviews 86, nr 3 (lipiec 2006): 1009–31. http://dx.doi.org/10.1152/physrev.00049.2005.
Pełny tekst źródłaKimura, M., H. H. Dietrich, V. H. Huxley, D. R. Reichner i R. G. Dacey. "Measurement of hydraulic conductivity in isolated arterioles of rat brain cortex". American Journal of Physiology-Heart and Circulatory Physiology 264, nr 6 (1.06.1993): H1788—H1797. http://dx.doi.org/10.1152/ajpheart.1993.264.6.h1788.
Pełny tekst źródłaStaehr, Christian, Rajkumar Rajanathan, Dmitry D. Postnov, Lise Hangaard, Elena V. Bouzinova, Karin Lykke-Hartmann, Flemming W. Bach, Shaun L. Sandow, Christian Aalkjaer i Vladimir V. Matchkov. "Abnormal neurovascular coupling as a cause of excess cerebral vasodilation in familial migraine". Cardiovascular Research 116, nr 12 (9.11.2019): 2009–20. http://dx.doi.org/10.1093/cvr/cvz306.
Pełny tekst źródłaDiaz-Otero, Janice M., Courtney Fisher, Kelsey Downs, M. Elizabeth Moss, Iris Z. Jaffe, William F. Jackson i Anne M. Dorrance. "Endothelial Mineralocorticoid Receptor Mediates Parenchymal Arteriole and Posterior Cerebral Artery Remodeling During Angiotensin II–Induced Hypertension". Hypertension 70, nr 6 (grudzień 2017): 1113–21. http://dx.doi.org/10.1161/hypertensionaha.117.09598.
Pełny tekst źródłaBaumbach, G. L., J. E. Siems, F. M. Faraci i D. D. Heistad. "Mechanics and composition of arterioles in brain stem and cerebrum". American Journal of Physiology-Heart and Circulatory Physiology 256, nr 2 (1.02.1989): H493—H501. http://dx.doi.org/10.1152/ajpheart.1989.256.2.h493.
Pełny tekst źródła