Artykuły w czasopismach na temat „Channels (Hydraulic engineering)”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Channels (Hydraulic engineering)”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Li, Dongfei, Ning Dai, Hongtao Wang i Fujun Zhang. "Mathematical Modeling Study of Pressure Loss in the Flow Channels of Additive Manufacturing Aviation Hydraulic Valves". Energies 16, nr 4 (10.02.2023): 1788. http://dx.doi.org/10.3390/en16041788.
Pełny tekst źródłaHager, Willi H. "Trapezoidal side-channel spillways". Canadian Journal of Civil Engineering 12, nr 4 (1.12.1985): 774–81. http://dx.doi.org/10.1139/l85-091.
Pełny tekst źródłaStefanyshyn, Dmytro V., Yaroslaw V. Khodnevich i Vasyl M. Korbutiak. "Еstimating the Chézy roughness coefficient as a characteristic of hydraulic resistance to flow in river channels: a general overview, existing challenges, and ways of their overcoming". Environmental safety and natural resources 39, nr 3 (23.09.2021): 16–43. http://dx.doi.org/10.32347/2411-4049.2021.3.16-43.
Pełny tekst źródłaZuikov, Andrey, i Tatiana Suehtina. "Hydraulics of smoothly streamlined Venturi channels of critical depth". E3S Web of Conferences 91 (2019): 07021. http://dx.doi.org/10.1051/e3sconf/20199107021.
Pełny tekst źródłaVerdiyev, A. "The Method of Predicting the Confidence Interval by the Culvert Capacity of Channels at the Design Stage". Bulletin of Science and Practice, nr 12 (15.12.2022): 372–81. http://dx.doi.org/10.33619/2414-2948/85/44.
Pełny tekst źródłaVoinov, Nikolaj Aleksandrovich, Anastasiya Viktorovna Bogatkova, Nina Vladimirovna Deryagina, Denis Andreevich Zemtsov i Nataliya Yul`evna Kozhukhova. "RESISTANCE OF TANGENTIAL SWIRLERS WITH ANNULAR CHANNELS". chemistry of plant raw material, nr 1 (10.03.2022): 335–42. http://dx.doi.org/10.14258/jcprm.2022019670.
Pełny tekst źródłaVoinov, Nikolaj Aleksandrovich, Anastasiya Viktorovna Bogatkova, Nina Vladimirovna Deryagina, Denis Andreevich Zemtsov i Nataliya Yul`evna Kozhukhova. "RESISTANCE OF TANGENTIAL SWIRLERS WITH ANNULAR CHANNELS". chemistry of plant raw material, nr 1 (10.03.2022): 335–42. http://dx.doi.org/10.14258/jcprm.2022019670.
Pełny tekst źródłaThomas and, Luis, i Beatriz Marino. "Lock-Exchange Flows in Non-Rectangular Cross-Section Channels". Journal of Fluids Engineering 126, nr 2 (1.03.2004): 290–92. http://dx.doi.org/10.1115/1.1677475.
Pełny tekst źródłaJoldassov, S. К., S. T. Abildaev i S. J. Tattibaev. "ON METHODS FOR DETERMINING THE ROUGHNESS COEFFICIENT OF CHANNELS ALONG THE PERIMETER". Herald of the Kazakh-British technical university 20, nr 3 (4.10.2023): 76–88. http://dx.doi.org/10.55452/1998-6688-2023-20-3-76-88.
Pełny tekst źródłaOrtloff, Charles R. "Tipon: Insight into Inka Hydraulic Engineering Practice". Latin American Antiquity 30, nr 4 (grudzień 2019): 724–40. http://dx.doi.org/10.1017/laq.2019.70.
Pełny tekst źródłaBorovkov, V. S., i M. Yurchuk. "Hydraulic resistance of vegetated channels". Hydrotechnical Construction 28, nr 8 (sierpień 1994): 432–38. http://dx.doi.org/10.1007/bf01487449.
Pełny tekst źródłaBaryshnikov, N. B., i A. F. Kudryashov. "Hydraulic resistances of river channels". Hydrotechnical Construction 33, nr 6 (czerwiec 1996): 347–52. http://dx.doi.org/10.1007/bf02764650.
Pełny tekst źródłaBaron, Alexander. "Determination of hydraulic resistance of channels using spectral geometry methods". Fluid Dynamics Research 53, nr 6 (1.12.2021): 065508. http://dx.doi.org/10.1088/1873-7005/ac44fa.
Pełny tekst źródłaAstakhov, V. P., P. S. Subramanya i M. O. M. Osman. "Theoretical and Experimental Investigations of Coolant Flow in Inlet Channels of the BTA and Ejector Drills". Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 209, nr 3 (czerwiec 1995): 211–20. http://dx.doi.org/10.1243/pime_proc_1995_209_075_02.
Pełny tekst źródłaGunal, Mustafa, i Rangaswami Narayanan. "Hydraulic Jump in Sloping Channels". Journal of Hydraulic Engineering 122, nr 8 (sierpień 1996): 436–42. http://dx.doi.org/10.1061/(asce)0733-9429(1996)122:8(436).
Pełny tekst źródłaBayon-Barrachina, Arnau, i Petra Amparo Lopez-Jimenez. "Numerical analysis of hydraulic jumps using OpenFOAM". Journal of Hydroinformatics 17, nr 4 (13.03.2015): 662–78. http://dx.doi.org/10.2166/hydro.2015.041.
Pełny tekst źródłaYang, Zhuo, Wuquan He, Yubao Wang, Zongke Lou i Pinzhang Duan. "Research on the Comprehensive Optimization of the Hydraulic Performance and Frost-Heaving Resistance of a Parabolic Channel". Water 12, nr 9 (15.09.2020): 2574. http://dx.doi.org/10.3390/w12092574.
Pełny tekst źródłaHuang, Zhipeng, Chenhao Du, Chenxu Wang, Qianran Sun, Yuepeng Xu, Lufang Shao, Bin Yu, Guoliang Ma i Xiangdong Kong. "Bionic Design and Optimization on the Flow Channel of a Legged Robot Joint Hydraulic Drive Unit Based on Additive Manufacturing". Biomimetics 9, nr 1 (31.12.2023): 13. http://dx.doi.org/10.3390/biomimetics9010013.
Pełny tekst źródłaShamohamadi, Behnam, i Ali Mehboudi. "Analyzing Parameters Influencing Scour Bed in Confluence Channels Using Flow3D Numerical Model". Civil Engineering Journal 2, nr 10 (30.10.2016): 529–37. http://dx.doi.org/10.28991/cej-2016-00000055.
Pełny tekst źródłaChang, Howard H. "Hydraulic Design of Erodible‐Bed Channels". Journal of Hydraulic Engineering 116, nr 1 (styczeń 1990): 87–101. http://dx.doi.org/10.1061/(asce)0733-9429(1990)116:1(87).
Pełny tekst źródłaLee, Jong-Seok, i Pierre Y. Julien. "Downstream Hydraulic Geometry of Alluvial Channels". Journal of Hydraulic Engineering 132, nr 12 (grudzień 2006): 1347–52. http://dx.doi.org/10.1061/(asce)0733-9429(2006)132:12(1347).
Pełny tekst źródłaBelozerov, Vladimir I., i Aleksandr S. Gorbach. "Investigation of the critical heat flux in small-diameter channels". Nuclear Energy and Technology 7, nr 1 (30.03.2021): 73–78. http://dx.doi.org/10.3897/nucet.7.65754.
Pełny tekst źródłaSaghir, Mohamad Ziad. "Thermo-Hydraulic Performance of Multiple Channels and Pin Fins Forming Convergent/Divergent Shape". Energies 15, nr 21 (27.10.2022): 7993. http://dx.doi.org/10.3390/en15217993.
Pełny tekst źródłaWang, Weishu, Juan Zhen, Weihui Xu, Jiawei Guo i Yuxin Zhai. "Numerical Study of Flow Field Optimization for Forebay and Suction Chamber to Solve the Vibration of Pumps in a Parallel Circulation Pumping Station". Machines 10, nr 8 (11.08.2022): 680. http://dx.doi.org/10.3390/machines10080680.
Pełny tekst źródłaZhu, Chenhui, Hongmei Zhang, Wanzhang Wang, Kang Li i Wanru Liu. "Robust control of hydraulic tracked vehicle drive system based on quantitative feedback theory". International Journal of Distributed Sensor Networks 16, nr 2 (luty 2020): 155014772090783. http://dx.doi.org/10.1177/1550147720907832.
Pełny tekst źródłaDelis, Anargiros I., i Ioannis K. Nikolos. "Shallow Water Equations in Hydraulics: Modeling, Numerics and Applications". Water 13, nr 24 (15.12.2021): 3598. http://dx.doi.org/10.3390/w13243598.
Pełny tekst źródłaHosokawa, Y., T. Ootsuki i C. Niwa. "Channel Experiments on Coastal Water Purification by Porous Bed Using Crushed Stones". Water Science and Technology 26, nr 9-11 (1.11.1992): 2007–10. http://dx.doi.org/10.2166/wst.1992.0648.
Pełny tekst źródłaHutli, Ezddin, i Ramadan Kridan. "Thermal-hydraulic analysis of light water reactors under different steady-state operating conditions, Part 2: Pressurized water reactor". Nuclear Technology and Radiation Protection 37, nr 4 (2022): 276–88. http://dx.doi.org/10.2298/ntrp2204276h.
Pełny tekst źródłaQin, Binbin, Fulian He, Xiaobing Zhang, Xuhui Xu, Wei Wang, Liang Li i Chen Dou. "Stability and Control of Retracement Channels in Thin Seam Working Faces with Soft Roof". Shock and Vibration 2021 (13.09.2021): 1–12. http://dx.doi.org/10.1155/2021/8667471.
Pełny tekst źródłaChandrabalan, Lokesh, Markus Baier, Roberto Meloni, Marco Pieri, Luca Ammannato, Eugenio Del Puglia i Simone Carmignato. "Non-Destructive Assessment of the Functional Diameter and Hydrodynamic Roughness of Additively Manufactured Channels". Applied Sciences 13, nr 10 (11.05.2023): 5911. http://dx.doi.org/10.3390/app13105911.
Pełny tekst źródłaTu, Yi, i Yu Zeng. "Numerical Study on Flow and Heat Transfer Characteristics of Supercritical CO2 in Zigzag Microchannels". Energies 15, nr 6 (13.03.2022): 2099. http://dx.doi.org/10.3390/en15062099.
Pełny tekst źródłaRoushangar, Kiyoumars, Reyhaneh Valizadeh i Roghayeh Ghasempour. "Estimation of hydraulic jump characteristics of channels with sudden diverging side walls via SVM". Water Science and Technology 76, nr 7 (24.05.2017): 1614–28. http://dx.doi.org/10.2166/wst.2017.304.
Pełny tekst źródłaNalluri, C., A. Ab Ghani i A. K. S. El-Zaemey. "Sediment Transport over Deposited Beds in Sewers". Water Science and Technology 29, nr 1-2 (1.01.1994): 125–33. http://dx.doi.org/10.2166/wst.1994.0658.
Pełny tekst źródłaCampisano, A., E. Creaco i C. Modica. "Experimental analysis of the Hydrass flushing gate and laboratory validation of flush propagation modelling". Water Science and Technology 54, nr 6-7 (1.09.2006): 101–8. http://dx.doi.org/10.2166/wst.2006.608.
Pełny tekst źródłaCao, Shuyou, i Donald W. Knight. "Design for Hydraulic Geometry of Alluvial Channels". Journal of Hydraulic Engineering 124, nr 5 (maj 1998): 484–92. http://dx.doi.org/10.1061/(asce)0733-9429(1998)124:5(484).
Pełny tekst źródłaRoushangar, Kiyoumars, i Roghayeh Ghasempour. "Evaluation of the impact of channel geometry and rough elements arrangement in hydraulic jump energy dissipation via SVM". Journal of Hydroinformatics 21, nr 1 (26.11.2018): 92–103. http://dx.doi.org/10.2166/hydro.2018.028.
Pełny tekst źródłaWei, Hai, Kaiyun Tao, Yongqin Luo, Bingyue Song, Mingming Wang i Juncai Xu. "Hydraulic Prototype Observation Tests on Reconstructed Energy Dissipation Facilities". Applied Sciences 13, nr 10 (19.05.2023): 6216. http://dx.doi.org/10.3390/app13106216.
Pełny tekst źródłaVolgin, George. "The hydraulic resistance coefficient in the conditions of simultaneous effect of Re, Fr and Unknown node mfrac found in MathML fragment.$ {B \over h} $". E3S Web of Conferences 97 (2019): 05031. http://dx.doi.org/10.1051/e3sconf/20199705031.
Pełny tekst źródłaWright, Lesley M., Wen-Lung Fu i Je-Chin Han. "Influence of Entrance Geometry on Heat Transfer in Rotating Rectangular Cooling Channels (AR=4:1) With Angled Ribs". Journal of Heat Transfer 127, nr 4 (30.03.2005): 378–87. http://dx.doi.org/10.1115/1.1860564.
Pełny tekst źródłaBekbasarov, I. I., i N. А. Shanshabayev. "ANALYSIS OF RESEARCH RESULTS AND APPLICATION OF PILES AS PART OF HYDRAULIC FACILITIES". Bulletin of Kazakh Leading Academy of Architecture and Construction 90, nr 4 (15.12.2023): 77–96. http://dx.doi.org/10.51488/1680-080x/2023.4-06.
Pełny tekst źródłaLiu, Jie, Qing Song Wei, An Li, Cong Wang, Wen Ting He i Yu Sheng Shi. "Experimental Study on Micro-Pressure Hydraulic Characteristics of Drip Irrigation Emitters with Multiple Types of Channels". Advanced Materials Research 255-260 (maj 2011): 3553–57. http://dx.doi.org/10.4028/www.scientific.net/amr.255-260.3553.
Pełny tekst źródłaPadmanabhan, M. "Hydraulic Jump In Non-Prismatic Rectangular Channels". Journal of Hydraulic Research 23, nr 4 (sierpień 1985): 386–89. http://dx.doi.org/10.1080/00221688509499348.
Pełny tekst źródłaShcherbyna, I. "PRINCIPLES OF CONSTRUCTION OF THE GENERALIZED MATHEMATICAL MODEL OF THE HYDRAULIC EXTINGUISHER OF OSCILLATIONS OF THE PASSENGER CAR". Collection of scientific works of the State University of Infrastructure and Technologies series "Transport Systems and Technologies" 1, nr 38 (24.12.2021): 173–84. http://dx.doi.org/10.32703/2617-9040-2021-38-170-16.
Pełny tekst źródłaAkhmedova, N. R., i V. A. Naumov. "Calculation of the roughness of the Sheshupe riverbed according to hydrological yearbooks". IOP Conference Series: Earth and Environmental Science 1112, nr 1 (1.12.2022): 012127. http://dx.doi.org/10.1088/1755-1315/1112/1/012127.
Pełny tekst źródłaWang, Xiukai, Yao Tang, Bo Huang, Tiantian Hu i Daosheng Ling. "Review on Numerical Simulation of the Internal Soil Erosion Mechanisms Using the Discrete Element Method". Water 13, nr 2 (13.01.2021): 169. http://dx.doi.org/10.3390/w13020169.
Pełny tekst źródłaOrtloff, Charles R. "Water Engineering at Precolumbian AD 600–1100 Tiwanaku’s Urban Center (Bolivia)". Water 12, nr 12 (18.12.2020): 3562. http://dx.doi.org/10.3390/w12123562.
Pełny tekst źródłaBeirami, M. K., i Mohammad R. Chamani. "Hydraulic Jumps in Sloping Channels: Sequent Depth Ratio". Journal of Hydraulic Engineering 132, nr 10 (październik 2006): 1061–68. http://dx.doi.org/10.1061/(asce)0733-9429(2006)132:10(1061).
Pełny tekst źródłaSivakumar, Karthikeyan, N. Kulasekharan i E. Natarajan. "Computational Investigations in Rectangular Convergent and Divergent Ribbed Channels". International Journal of Turbo & Jet-Engines 35, nr 2 (25.05.2018): 193–201. http://dx.doi.org/10.1515/tjj-2016-0032.
Pełny tekst źródłaFuchino, S., M. Furuse, N. Higuchi, M. Okano i K. Agatsuma. "Hydraulic Characteristics of Long Nitrogen Cooling Channels". IEEE Transactions on Appiled Superconductivity 14, nr 2 (czerwiec 2004): 1754–57. http://dx.doi.org/10.1109/tasc.2004.831069.
Pełny tekst źródłaTsaplin, M. I., V. P. Shul'ga i V. G. Tabankov. "Heat exchange and hydraulic resistance in radial rotating channels". Journal of Engineering Physics 57, nr 4 (październik 1989): 1160–65. http://dx.doi.org/10.1007/bf00871131.
Pełny tekst źródła