Artykuły w czasopismach na temat „Chemiresistive gas sensor”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Chemiresistive gas sensor”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Schober, Sebastian A., Yosra Bahri, Cecilia Carbonelli i Robert Wille. "Neural Network Robustness Analysis Using Sensor Simulations for a Graphene-Based Semiconductor Gas Sensor". Chemosensors 10, nr 5 (21.04.2022): 152. http://dx.doi.org/10.3390/chemosensors10050152.
Pełny tekst źródłaZhou, Guangying, Bingsheng Du, Jie Zhong, Le Chen, Yuyu Sun, Jia Yue, Minglang Zhang i in. "Advances in Gas Detection of Pattern Recognition Algorithms for Chemiresistive Gas Sensor". Materials 17, nr 21 (24.10.2024): 5190. http://dx.doi.org/10.3390/ma17215190.
Pełny tekst źródłaKim, Myeong Gyu, i Yun-Hyuk Choi. "Gas-Sensing Properties of Co9S8 Films Toward Formaldehyde, Ethanol, and Hydrogen Sulfide". Materials 17, nr 23 (24.11.2024): 5743. http://dx.doi.org/10.3390/ma17235743.
Pełny tekst źródłaBezdek, Máté J., Shao-Xiong Lennon Luo, Kang Hee Ku i Timothy M. Swager. "A chemiresistive methane sensor". Proceedings of the National Academy of Sciences 118, nr 2 (31.12.2020): e2022515118. http://dx.doi.org/10.1073/pnas.2022515118.
Pełny tekst źródłaJe, Yeonjin, i Sang-Soo Chee. "Controlling the Morphology of Tellurene for a High-Performance H2S Chemiresistive Room-Temperature Gas Sensor". Nanomaterials 13, nr 19 (5.10.2023): 2707. http://dx.doi.org/10.3390/nano13192707.
Pełny tekst źródłaZhang, Run, Cong Qin, Hari Bala, Yan Wang i Jianliang Cao. "Recent Progress in Spinel Ferrite (MFe2O4) Chemiresistive Based Gas Sensors". Nanomaterials 13, nr 15 (27.07.2023): 2188. http://dx.doi.org/10.3390/nano13152188.
Pełny tekst źródłaSchober, Sebastian A., Cecilia Carbonelli i Robert Wille. "Simulating Defects in Environmental Sensor Networks Using Stochastic Sensor Models". Engineering Proceedings 6, nr 1 (17.05.2021): 88. http://dx.doi.org/10.3390/i3s2021dresden-10094.
Pełny tekst źródłaDougami, Naganori, Takeshi Miyata, Taishi Orita, Tadashi Nakatani, Rui Kakunaka, Takafumi Taniguchi, Hirokazu Mitsuhashi i Shoichiro Nakao. "Hot-wire-type micromachined chemiresistive gas sensors for battery-powered city gas alarms". Japanese Journal of Applied Physics 64, nr 1 (1.01.2025): 01SP13. https://doi.org/10.35848/1347-4065/ada29c.
Pełny tekst źródłaHuang, Baoyu, Xinwei Tong, Xiangpeng Zhang, Qiuxia Feng, Marina N. Rumyantseva, Jai Prakash i Xiaogan Li. "MXene/NiO Composites for Chemiresistive-Type Room Temperature Formaldehyde Sensor". Chemosensors 11, nr 4 (21.04.2023): 258. http://dx.doi.org/10.3390/chemosensors11040258.
Pełny tekst źródłaYang, Taicong, Fengchun Tian, James A. Covington, Feng Xu, Yi Xu, Anyan Jiang, Junhui Qian, Ran Liu, Zichen Wang i Yangfan Huang. "Resistance-Capacitance Gas Sensor Based on Fractal Geometry". Chemosensors 7, nr 3 (15.07.2019): 31. http://dx.doi.org/10.3390/chemosensors7030031.
Pełny tekst źródłaWei, Minghui, Xuerong Shi, Min Zhu, Shengming Zhang, Heng Zhang, Haiyu Yao i Shusheng Xu. "Research Progress on Chemiresistive Carbon Monoxide Sensors". Nanomaterials 15, nr 4 (16.02.2025): 303. https://doi.org/10.3390/nano15040303.
Pełny tekst źródłaAdamek, Martin, Jiri Mlcek, Nela Skowronkova, Magdalena Zvonkova, Miroslav Jasso, Anna Adamkova, Josef Skacel i in. "3D Printed Fused Deposition Modeling (FDM) Capillaries for Chemiresistive Gas Sensors". Sensors 23, nr 15 (31.07.2023): 6817. http://dx.doi.org/10.3390/s23156817.
Pełny tekst źródłaKumawat, Meenakshi, Devyani Thapliyal, George D. Verros, Raj Kumar Arya, Sanghamitra Barman, Gopinath Halder i Pooja Shandilya. "PANI-Based Hydrogen Sulfide Gas Sensors". Coatings 12, nr 2 (31.01.2022): 186. http://dx.doi.org/10.3390/coatings12020186.
Pełny tekst źródłaMeka, Divakara, Linda A. George i Shalini Prasad. "Triethanolamine Nanocomposite-based Chemiresistive Nitrogen Dioxide Gas Sensor". Journal of the Association for Laboratory Automation 14, nr 2 (kwiecień 2009): 69–75. http://dx.doi.org/10.1016/j.jala.2008.08.007.
Pełny tekst źródłaChen, Xiaohu, Ryan Wreyford i Noushin Nasiri. "Recent Advances in Ethylene Gas Detection". Materials 15, nr 17 (23.08.2022): 5813. http://dx.doi.org/10.3390/ma15175813.
Pełny tekst źródłaJiang, Yang, Ning Tang, Cheng Zhou, Ziyu Han, Hemi Qu i Xuexin Duan. "A chemiresistive sensor array from conductive polymer nanowires fabricated by nanoscale soft lithography". Nanoscale 10, nr 44 (2018): 20578–86. http://dx.doi.org/10.1039/c8nr04198a.
Pełny tekst źródłaKruse, Peter. "(Invited) Chemiresistive Water Quality Sensors: Challenges and Progress". ECS Meeting Abstracts MA2022-01, nr 52 (7.07.2022): 2135. http://dx.doi.org/10.1149/ma2022-01522135mtgabs.
Pełny tekst źródłaMankar, R. B., i V. D. Kapse. "Cerium Modified Nanocrystalline SmFeO3 for Ethanol Sensing". Oriental Journal Of Chemistry 40, nr 2 (30.04.2024): 362–68. http://dx.doi.org/10.13005/ojc/400206.
Pełny tekst źródłaJha, Ravindra Kumar, Aman Nanda i Navakanta Bhat. "Ultrasonication assisted fabrication of a tungsten sulfide/tungstite heterostructure for ppb-level ammonia detection at room temperature". RSC Advances 10, nr 37 (2020): 21993–2001. http://dx.doi.org/10.1039/d0ra02553d.
Pełny tekst źródłaManikandan, V., Iulian Petrila, S. Vigneselvan, R. S. Mane, Bogdan Vasile, Raghu Dharmavarapu, Stefan Lundgaard, Saulius Juodkazis i J. Chandrasekaran. "A reliable chemiresistive sensor of nickel-doped tin oxide (Ni-SnO2) for sensing carbon dioxide gas and humidity". RSC Advances 10, nr 7 (2020): 3796–804. http://dx.doi.org/10.1039/c9ra09579a.
Pełny tekst źródłaFedorov, Fedor S., Maksim A. Solomatin, Margitta Uhlemann, Steffen Oswald, Dmitry A. Kolosov, Anatolii Morozov, Alexey S. Varezhnikov i in. "Quasi-2D Co3O4 nanoflakes as an efficient gas sensor versus alcohol VOCs". Journal of Materials Chemistry A 8, nr 15 (2020): 7214–28. http://dx.doi.org/10.1039/d0ta00511h.
Pełny tekst źródłaLin, Chia-Yu, Po-Chin Nien, Wei-Yi Feng, Chii-Wann Lin, Jim Tunney i Kuo-Chuan Ho. "Chemiresistive NO Gas Sensor Based on Zinc Oxide Nanorods". Journal of Bionanoscience 2, nr 2 (1.12.2008): 102–8. http://dx.doi.org/10.1166/jbns.2008.032.
Pełny tekst źródłaBabar, B. M., S. H. Sutar, S. H. Mujawar, S. S. Patil, U. D. Babar, U. T. Pawar, P. M. Kadam, P. S. Patil i L. D. Kadam. "V2O5-rGO based chemiresistive gas sensor for NO2 detection". Materials Science and Engineering: B 298 (grudzień 2023): 116827. http://dx.doi.org/10.1016/j.mseb.2023.116827.
Pełny tekst źródłaKodu, Margus, Artjom Berholts, Tauno Kahro, Jens Eriksson, Rositsa Yakimova, Tea Avarmaa, Indrek Renge, Harry Alles i Raivo Jaaniso. "Highly Sensitive NH3 Sensors Using CVD and Epitaxial Graphene Functionalised with Vanadium(V) Oxide: A Comparative Study". Proceedings 2, nr 13 (20.11.2018): 854. http://dx.doi.org/10.3390/proceedings2130854.
Pełny tekst źródłaPazniak, Hanna, Ilya A. Plugin, Polina M. Sheverdyaeva, Laetitia Rapenne, Alexey S. Varezhnikov, Antonio Agresti, Sara Pescetelli i in. "Alcohol Vapor Sensor Based on Quasi-2D Nb2O5 Derived from Oxidized Nb2CTz MXenes". Sensors 24, nr 1 (20.12.2023): 38. http://dx.doi.org/10.3390/s24010038.
Pełny tekst źródłaJayaramulu, Kolleboyina, Marilyn Esclance DMello, Kamali Kesavan, Andreas Schneemann, Michal Otyepka, Stepan Kment, Chandrabhas Narayana i in. "A multifunctional covalently linked graphene–MOF hybrid as an effective chemiresistive gas sensor". Journal of Materials Chemistry A 9, nr 32 (2021): 17434–41. http://dx.doi.org/10.1039/d1ta03246a.
Pełny tekst źródłaFu, Li, Shixi You, Guangjun Li, Xingxing Li i Zengchang Fan. "Application of Semiconductor Metal Oxide in Chemiresistive Methane Gas Sensor: Recent Developments and Future Perspectives". Molecules 28, nr 18 (20.09.2023): 6710. http://dx.doi.org/10.3390/molecules28186710.
Pełny tekst źródłaTang, Xiaohui, Jean-Pierre Raskin, Nicolas Reckinger, Yiyi Yan, Nicolas André, Driss Lahem i Marc Debliquy. "Enhanced Gas Detection by Altering Gate Voltage Polarity of Polypyrrole/Graphene Field-Effect Transistor Sensor". Chemosensors 10, nr 11 (9.11.2022): 467. http://dx.doi.org/10.3390/chemosensors10110467.
Pełny tekst źródłaLim, Namsoo, Jae-Sung Lee i Young Tae Byun. "Negatively-Doped Single-Walled Carbon Nanotubes Decorated with Carbon Dots for Highly Selective NO2 Detection". Nanomaterials 10, nr 12 (14.12.2020): 2509. http://dx.doi.org/10.3390/nano10122509.
Pełny tekst źródłaGao, Tuo, Yongchen Wang, Yi Luo, Chengwu Zhang, Zachariah Pittman, Alexandra Oliveira, Howard Craig, Jing Zhao i Brian G. Willis. "Fast and Reversible Chemiresistive Sensors for Robust Detection of Organic Vapors Using Oleylamine-Functionalized Palladium Nanoparticles". International Journal of High Speed Electronics and Systems 27, nr 03n04 (wrzesień 2018): 1840027. http://dx.doi.org/10.1142/s012915641840027x.
Pełny tekst źródłaKumar, Sanjeev, Navdeep Kaur, Anshul Kumar Sharma, Aman Mahajan i R. K. Bedi. "Improved Cl2 sensing characteristics of reduced graphene oxide when decorated with copper phthalocyanine nanoflowers". RSC Advances 7, nr 41 (2017): 25229–36. http://dx.doi.org/10.1039/c7ra02212c.
Pełny tekst źródłaSun, Kai, Guanghui Zhan, Hande Chen i Shiwei Lin. "Low-Operating-Temperature NO2 Sensor Based on a CeO2/ZnO Heterojunction". Sensors 21, nr 24 (10.12.2021): 8269. http://dx.doi.org/10.3390/s21248269.
Pełny tekst źródłaZvonkova, Magdalena, Martin Adamek, Nela Skowronkova, Stepan Dlabaja, Jiri Matyas, Miroslav Jasso, Anna Adamkova, Jiri Mlcek, Richardos Nikolaos Salek i Martin Buran. "Compact 3D-Printed Unit for Separation of Simple Gas Mixtures Combined with Chemiresistive Sensors". Sensors 24, nr 13 (6.07.2024): 4391. http://dx.doi.org/10.3390/s24134391.
Pełny tekst źródłaSakhuja, Neha, Ravindra Kumar Jha i Navakanta Bhat. "Tungsten Disulphide Nanosheets for High-Performance Chemiresistive Ammonia Gas Sensor". IEEE Sensors Journal 19, nr 24 (15.12.2019): 11767–74. http://dx.doi.org/10.1109/jsen.2019.2936978.
Pełny tekst źródłaShao, Shaofeng, Hongyan Wu, Fan Jiang, Shimin Wang, Tao Wu, Yating Lei, Ralf Koehn i Wei-Feng Rao. "Regulable switching from p- to n-type behavior of ordered nanoporous Pt-SnO2 thin films with enhanced room temperature toluene sensing performance". RSC Advances 6, nr 27 (2016): 22878–88. http://dx.doi.org/10.1039/c5ra24736e.
Pełny tekst źródłaKodu, Margus, Tea Avarmaa, Hugo Mändar, Rando Saar i Raivo Jaaniso. "Structure-Dependent CO2 Gas Sensitivity of La2O2CO3 Thin Films". Journal of Sensors 2017 (2017): 1–6. http://dx.doi.org/10.1155/2017/9591081.
Pełny tekst źródłaPetrushenko, Sergey I., Mateusz Fijalkowski, Kinga Adach, Denis Fedonenko, Yevhenii M. Shepotko, Sergei V. Dukarov, Volodymyr M. Sukhov, Alina L. Khrypunova i Natalja P. Klochko. "Low-Temperature, Highly Sensitive Ammonia Sensors Based on Nanostructured Copper Iodide Layers". Chemosensors 13, nr 2 (22.01.2025): 29. https://doi.org/10.3390/chemosensors13020029.
Pełny tekst źródłaSysoev, Vitalii I., Mikhail O. Bulavskiy, Dmitry V. Pinakov, Galina N. Chekhova, Igor P. Asanov, Pavel N. Gevko, Lyubov G. Bulusheva i Alexander V. Okotrub. "Chemiresistive Properties of Imprinted Fluorinated Graphene Films". Materials 13, nr 16 (11.08.2020): 3538. http://dx.doi.org/10.3390/ma13163538.
Pełny tekst źródłaChen, Xiyu, Min Zeng, Jianhua Yang, Nantao Hu, Xiaoyong Duan, Wei Cai, Yanjie Su i Zhi Yang. "Two-Dimensional Bimetallic Phthalocyanine Covalent-Organic-Framework-Based Chemiresistive Gas Sensor for ppb-Level NO2 Detection". Nanomaterials 13, nr 10 (17.05.2023): 1660. http://dx.doi.org/10.3390/nano13101660.
Pełny tekst źródłaChiou, Jin-Chern, Chin-Cheng Wu i Tse-Mei Lin. "Sensitivity Enhancement of Acetone Gas Sensor using Polyethylene Glycol/Multi-Walled Carbon Nanotubes Composite Sensing Film with Thermal Treatment". Polymers 11, nr 3 (5.03.2019): 423. http://dx.doi.org/10.3390/polym11030423.
Pełny tekst źródłaSysoev, Victor V., Andrey V. Lashkov, Alexey Lipatov, Ilya A. Plugin, Michael Bruns, Dirk Fuchs, Alexey S. Varezhnikov, Mustahsin Adib, Martin Sommer i Alexander Sinitskii. "UV-Light-Tunable p-/n-Type Chemiresistive Gas Sensors Based on Quasi-1D TiS3 Nanoribbons: Detection of Isopropanol at ppm Concentrations". Sensors 22, nr 24 (14.12.2022): 9815. http://dx.doi.org/10.3390/s22249815.
Pełny tekst źródłaWagner, Ricarda, Daniela Schönauer-Kamin i Ralf Moos. "Novel Operation Strategy to Obtain a Fast Gas Sensor for Continuous ppb-Level NO2 Detection at Room Temperature Using ZnO—A Concept Study with Experimental Proof". Sensors 19, nr 19 (23.09.2019): 4104. http://dx.doi.org/10.3390/s19194104.
Pełny tekst źródłaPolyakov, Maxim, Victoria Ivanova, Darya Klyamer, Baybars Köksoy, Ahmet Şenocak, Erhan Demirbaş, Mahmut Durmuş i Tamara Basova. "A Hybrid Nanomaterial Based on Single Walled Carbon Nanotubes Cross-Linked via Axially Substituted Silicon (IV) Phthalocyanine for Chemiresistive Sensors". Molecules 25, nr 9 (29.04.2020): 2073. http://dx.doi.org/10.3390/molecules25092073.
Pełny tekst źródłaNagare, Amruta B., Namdev S. Harale, Sawanta S. Mali, Sarita S. Nikam, Pramod S. Patil, Chang Kook Hong i Annasaheb V. Moholkar. "Chemiresistive ammonia gas sensor based on branched nanofibrous polyaniline thin films". Journal of Materials Science: Materials in Electronics 30, nr 13 (29.05.2019): 11878–87. http://dx.doi.org/10.1007/s10854-019-01514-7.
Pełny tekst źródłaChang, Won Suk, Jung Hyun Kim, Daeho Kim, Sung Ho Cho i Seung Kwon Seol. "Individually Addressable Suspended Conducting-Polymer Wires in a Chemiresistive Gas Sensor". Macromolecular Chemistry and Physics 215, nr 17 (28.07.2014): 1633–38. http://dx.doi.org/10.1002/macp.201400220.
Pełny tekst źródłaFilipovic, Lado, i Siegfried Selberherr. "Application of Two-Dimensional Materials towards CMOS-Integrated Gas Sensors". Nanomaterials 12, nr 20 (18.10.2022): 3651. http://dx.doi.org/10.3390/nano12203651.
Pełny tekst źródłaGargiulo, Valentina, Michela Alfè, Laura Giordano i Stefano Lettieri. "Materials for Chemical Sensing: A Comprehensive Review on the Recent Advances and Outlook Using Ionic Liquids, Metal–Organic Frameworks (MOFs), and MOF-Based Composites". Chemosensors 10, nr 8 (22.07.2022): 290. http://dx.doi.org/10.3390/chemosensors10080290.
Pełny tekst źródłaNam, Bumhee, Tae-Kyung Ko, Soong-Keun Hyun i Chongmu Lee. "CO Sensing Properties of Chemiresistive In2O3/SnO2 Composite Nanoparticle Sensors". Journal of Nanoscience and Nanotechnology 20, nr 7 (1.07.2020): 4344–48. http://dx.doi.org/10.1166/jnn.2020.17577.
Pełny tekst źródłaKodu, Margus, Rainer Pärna, Tea Avarmaa, Indrek Renge, Jekaterina Kozlova, Tauno Kahro i Raivo Jaaniso. "Gas-Sensing Properties of Graphene Functionalized with Ternary Cu-Mn Oxides for E-Nose Applications". Chemosensors 11, nr 8 (15.08.2023): 460. http://dx.doi.org/10.3390/chemosensors11080460.
Pełny tekst źródłaHwa, Yeongsik, Yeonjin Je, Hyunsung Jung i Sang-Soo Chee. "Enhanced Reliability of NO2 Chemiresistive Room Temperature Sensor Based on SnSeX and Its Module Integration". ECS Meeting Abstracts MA2024-02, nr 65 (22.11.2024): 4370. https://doi.org/10.1149/ma2024-02654370mtgabs.
Pełny tekst źródła