Artykuły w czasopismach na temat „Chimeric competency”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Chimeric competency”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Strell, Phoebe, Anala Shetty, Clifford J. Steer, and Walter C. Low. "Interspecies Chimeric Barriers for Generating Exogenic Organs and Cells for Transplantation." Cell Transplantation 31 (January 2022): 096368972211105. http://dx.doi.org/10.1177/09636897221110525.
Pełny tekst źródłaLacadena Calero, Juan Ramón. "BIOÉTIC AS MACAQUE-HUMAN CHIMERAS: SCIENTIFIC ASPECTS AND BIOETHICAL REFLECTIONS." Anales de la Real Academia Nacional de Farmacia, no. 87(02) (2021): 117–21. http://dx.doi.org/10.53519/anaesranf.2021.87.02.01.
Pełny tekst źródłaAfanassieff, Marielle, Florence Perold, Wilhelm Bouchereau, Antoine Cadiou, and Nathalie Beaujean. "Embryo-derived and induced pluripotent stem cells: Towards naive pluripotency and chimeric competency in rabbits." Experimental Cell Research 389, no. 2 (2020): 111908. http://dx.doi.org/10.1016/j.yexcr.2020.111908.
Pełny tekst źródłaHirabayashi, M., T. Goto, C. Tamura, M. Sanbo, and S. Hochi. "202 EFFECT OF LEUKEMIA INHIBITORY FACTOR AND FORSKOLIN ON ESTABLISHMENT OF RAT EMBRYONIC STEM CELL LINES." Reproduction, Fertility and Development 26, no. 1 (2014): 215. http://dx.doi.org/10.1071/rdv26n1ab202.
Pełny tekst źródłaTapponnier, Yann, Marielle Afanassieff, Irène Aksoy, et al. "Reprogramming of rabbit induced pluripotent stem cells toward epiblast and chimeric competency using Krüppel-like factors." Stem Cell Research 24 (October 2017): 106–17. http://dx.doi.org/10.1016/j.scr.2017.09.001.
Pełny tekst źródłaWhitaker, Neal, Trista M. Berry, Nathan Rosenthal, et al. "Chimeric Coupling Proteins Mediate Transfer of Heterologous Type IV Effectors through the Escherichia coli pKM101-Encoded Conjugation Machine." Journal of Bacteriology 198, no. 19 (2016): 2701–18. http://dx.doi.org/10.1128/jb.00378-16.
Pełny tekst źródłaKondoh, Gen, Yoichi Yamamoto, Kayo Yoshida, et al. "Easy assessment of ES cell clone potency for chimeric development and germ-line competency by an optimized aggregation method." Journal of Biochemical and Biophysical Methods 39, no. 3 (1999): 137–42. http://dx.doi.org/10.1016/s0165-022x(99)00008-1.
Pełny tekst źródłaFields, Chris, and Michael Levin. "Competency in Navigating Arbitrary Spaces as an Invariant for Analyzing Cognition in Diverse Embodiments." Entropy 24, no. 6 (2022): 819. http://dx.doi.org/10.3390/e24060819.
Pełny tekst źródłaZaslavsky, Alexander, Mackenzie Adams, Sandra Wissmueller, et al. "Glypican-1 as a novel immunotherapeutic target in prostate cancer." Journal of Clinical Oncology 36, no. 6_suppl (2018): 174. http://dx.doi.org/10.1200/jco.2018.36.6_suppl.174.
Pełny tekst źródłaUgale, Amol Sanjay, Gudmundur Logi Norddahl, Martin Wahlestedt, et al. "Hematopoietic Stem Cells Are Intrinsically Protected Against MLL-ENL Mediated Transformation." Blood 124, no. 21 (2014): 839. http://dx.doi.org/10.1182/blood.v124.21.839.839.
Pełny tekst źródłaNakano, K., M. Watanabe, H. Matsunari, et al. "297 PRODUCTION OF CHIMERIC PORCINE FETUSES BY AGGREGATION METHOD USING PARTHENOGENETIC EMBRYOS." Reproduction, Fertility and Development 25, no. 1 (2013): 296. http://dx.doi.org/10.1071/rdv25n1ab297.
Pełny tekst źródłaMatsunari, H., K. Nakano, T. Kanai, et al. "26 IN VIVO EXOGENIC ORGAN GENERATION WITH ORGANOGENESIS-DISABLED CLONED PIGS AS A PLATFORM." Reproduction, Fertility and Development 26, no. 1 (2014): 127. http://dx.doi.org/10.1071/rdv26n1ab26.
Pełny tekst źródłaWei, Hairong, and Michael Brown. "MHC Class I Dk expression in hematopoietic and non-hematopoietic cells is essential to NK cell licensing and murine CMV resistance (P6308)." Journal of Immunology 190, no. 1_Supplement (2013): 182.6. http://dx.doi.org/10.4049/jimmunol.190.supp.182.6.
Pełny tekst źródłaHaqshenas, G., X. Dong, H. Netter, J. Torresi, and E. J. Gowans. "A chimeric GB virus B encoding the hepatitis C virus hypervariable region 1 is infectious in vivo." Journal of General Virology 88, no. 3 (2007): 895–902. http://dx.doi.org/10.1099/vir.0.82467-0.
Pełny tekst źródłaKim, Kee-Pyo, You Wu, Juyong Yoon, et al. "Reprogramming competence of OCT factors is determined by transactivation domains." Science Advances 6, no. 36 (2020): eaaz7364. http://dx.doi.org/10.1126/sciadv.aaz7364.
Pełny tekst źródłaGeiger, B., D. Salomon, M. Takeichi, and R. O. Hynes. "A chimeric N-cadherin/beta 1-integrin receptor which localizes to both cell-cell and cell-matrix adhesions." Journal of Cell Science 103, no. 4 (1992): 943–51. http://dx.doi.org/10.1242/jcs.103.4.943.
Pełny tekst źródłaSánchez-Moguel, Ignacio, Carmina Montiel, and Ismael Bustos-Jaimes. "Therapeutic Potential of Engineered Virus-like Particles of Parvovirus B19." Pathogens 12, no. 8 (2023): 1007. http://dx.doi.org/10.3390/pathogens12081007.
Pełny tekst źródłaLeventhal, Joseph, Larry D. Bozulic, Mark D. Badder, et al. "Evaluation Of Immunocompentence In Tolerant Chimeric Recipients Of Hematopoietic Stem Cell/Renal Transplants." Blood 122, no. 21 (2013): 4483. http://dx.doi.org/10.1182/blood.v122.21.4483.4483.
Pełny tekst źródłaMatatall, Katie, Ching-Chieh Shen, Yayun Zheng, and Katherine Y. King. "Chronic Mycobacterium Avium Infection Leads to Cell Autonomous Exhaustion of Hematopoietic Stem Cells." Blood 124, no. 21 (2014): 2947. http://dx.doi.org/10.1182/blood.v124.21.2947.2947.
Pełny tekst źródłaWillis, Lauren, Sara R. Fagerlie, and Sattva S. Neelapu. "Evaluating Hematologist's Knowledge of CAR T-Cell Therapy in Hematologic Malignancies." Blood 132, Supplement 1 (2018): 2269. http://dx.doi.org/10.1182/blood-2018-99-115036.
Pełny tekst źródłaGatenbee, Chandler D., Mark Robertson-Tessi, Maximilian Strobl, et al. "Abstract A011: Modeling the coevolution of native and CAR T-cells in large B cell lymphoma reveals a potential biomarker for response to therapy." Cancer Research 84, no. 3_Supplement_2 (2024): A011. http://dx.doi.org/10.1158/1538-7445.canevol23-a011.
Pełny tekst źródłaSawaisorn, Piamsiri, Korakot Atjanasuppat, Usanarat Anurathapan, Somchai Chutipongtanate, and Suradej Hongeng. "Strategies to Improve Chimeric Antigen Receptor Therapies for Neuroblastoma." Vaccines 8, no. 4 (2020): 753. http://dx.doi.org/10.3390/vaccines8040753.
Pełny tekst źródłaBosch, Berend Jan, Cornelis A. M. de Haan, and Peter J. M. Rottier. "Coronavirus Spike Glycoprotein, Extended at the Carboxy Terminus with Green Fluorescent Protein, Is Assembly Competent." Journal of Virology 78, no. 14 (2004): 7369–78. http://dx.doi.org/10.1128/jvi.78.14.7369-7378.2004.
Pełny tekst źródłaImmidisetti, Amanda, Sean Munier, and Nitesh Patel. "COVD-18. POTENTIAL TO HARNESS SARS-COV-2 NEUROTROPISM IN THE DELIVERY OF ONCOLYTIC VIROTHERAPY FOR THE TREATMENT OF HIGH-GRADE GLIOMA." Neuro-Oncology 22, Supplement_2 (2020): ii24—ii25. http://dx.doi.org/10.1093/neuonc/noaa215.101.
Pełny tekst źródłaJeong, Pil-Soo, Seung-Bin Yoon, Mun-Hyeong Lee, et al. "Embryo aggregation regulates in vitro stress conditions to promote developmental competence in pigs." PeerJ 7 (December 13, 2019): e8143. http://dx.doi.org/10.7717/peerj.8143.
Pełny tekst źródłaMCCARTHY, SUSAN A., IRWIN J. GRIFFITH, PHILLIP GAMBEL, et al. "IMMUNOLOGICAL COMPETENCE AND HOST-SPECIFIC TOLERANCE OF ANTIBODY-FACILITATED BONE MARROW CHIMERAS." Transplantation 44, no. 1 (1987): 97–105. http://dx.doi.org/10.1097/00007890-198707000-00021.
Pełny tekst źródłaYang, Yifang, Jingjun Lin, Anthony Harrington, Gabriel Cornilescu, Gee W. Lau, and Yftah Tal-Gan. "Designing cyclic competence-stimulating peptide (CSP) analogs with pan-group quorum-sensing inhibition activity in Streptococcus pneumoniae." Proceedings of the National Academy of Sciences 117, no. 3 (2020): 1689–99. http://dx.doi.org/10.1073/pnas.1915812117.
Pełny tekst źródłaKITO, Seiji, Yoshiko NOGUCHI, Yuki OHTA, et al. "Evaluation of Developmental Competence of Vitrified-warmed Early Cleavage Stage Embryos and their Application for Chimeric Mouse Production." Experimental Animals 52, no. 2 (2003): 179–83. http://dx.doi.org/10.1538/expanim.52.179.
Pełny tekst źródłaLee, Joohyeong, Lian Cai, Mirae Kim, et al. "Developmental competence of chimeric porcine embryos through the aggregation of parthenogenetic embryos and somatic cell nuclear transfer embryos." Korean Journal of Veterinary Research 63, no. 1 (2023): e3. http://dx.doi.org/10.14405/kjvr.20230003.
Pełny tekst źródłaŚwierczek-Lasek, Barbara, Jacek Neska, Agata Kominek, et al. "Interleukin 4 Moderately Affects Competence of Pluripotent Stem Cells for Myogenic Conversion." International Journal of Molecular Sciences 20, no. 16 (2019): 3932. http://dx.doi.org/10.3390/ijms20163932.
Pełny tekst źródłaLoskutoff, N. M., and D. C. Kraemer. "Factors influencing the developmental competence of intraspecific murine chimeras produced by multiple embryo aggregation." Theriogenology 33, no. 1 (1990): 276. http://dx.doi.org/10.1016/0093-691x(90)90700-4.
Pełny tekst źródłaGustems, Montse, Andreas Busche, Martin Messerle, Peter Ghazal, and Ana Angulo. "In Vivo Competence of Murine Cytomegalovirus under the Control of the Human Cytomegalovirus Major Immediate-Early Enhancer in the Establishment of Latency and Reactivation." Journal of Virology 82, no. 20 (2008): 10302–7. http://dx.doi.org/10.1128/jvi.01255-08.
Pełny tekst źródłaLee, Myeong S., Brian A. Dougherty, Anne C. Madeo, and Donald A. Morrison. "Construction and Analysis of a Library for Random Insertional Mutagenesis in Streptococcus pneumoniae: Use for Recovery of Mutants Defective in Genetic Transformation and for Identification of Essential Genes." Applied and Environmental Microbiology 65, no. 5 (1999): 1883–90. http://dx.doi.org/10.1128/aem.65.5.1883-1890.1999.
Pełny tekst źródłaPeters, Okimi, and W. Allan King. "The detection of female cell activity in male sex chromosome chimeric Rideau Arcott sheep, using the Xist gene product as a marker." SURG Journal 1, no. 2 (2008): 20–25. http://dx.doi.org/10.21083/surg.v1i2.414.
Pełny tekst źródłaCarstea, Ana Claudia. "Germline competence of mouse ES and iPS cell lines: Chimera technologies and genetic background." World Journal of Stem Cells 1, no. 1 (2009): 22. http://dx.doi.org/10.4252/wjsc.v1.i1.22.
Pełny tekst źródłaKlco, Jeffery M., Saurabh Sen, Jakob L. Hansen, et al. "Complement factor 5a receptor chimeras reveal the importance of lipid-facing residues in transport competence." FEBS Journal 276, no. 10 (2009): 2786–800. http://dx.doi.org/10.1111/j.1742-4658.2009.07002.x.
Pełny tekst źródłaRüedi, E., M. Sykes, S. T. Ildstad, et al. "Antiviral T cell competence and restriction specificity of mixed allogeneic (P1 + P2 → P1) irradiation chimeras." Cellular Immunology 121, no. 1 (1989): 185–95. http://dx.doi.org/10.1016/0008-8749(89)90016-6.
Pełny tekst źródłaPeranteau, William H., Masayuki Endo, Obinna O. Adibe, and Alan W. Flake. "Evidence for an immune barrier after in utero hematopoietic-cell transplantation." Blood 109, no. 3 (2006): 1331–33. http://dx.doi.org/10.1182/blood-2006-04-018606.
Pełny tekst źródłaPeranteau, William H., Masayuki Endo, Obinna O. Adibe, and Alan W. Flake. "Evidence for an Adaptive Immune Barrier after in Utero Hematopoietic Cell Transplantation." Blood 108, no. 11 (2006): 3179. http://dx.doi.org/10.1182/blood.v108.11.3179.3179.
Pełny tekst źródłaKrüger, Nadine, Christian Sauder, Sarah Hüttl, et al. "Entry, Replication, Immune Evasion, and Neurotoxicity of Synthetically Engineered Bat-Borne Mumps Virus." Cell Reports 25, no. 2 (2018): 312–20. https://doi.org/10.5281/zenodo.13452751.
Pełny tekst źródłaKrüger, Nadine, Christian Sauder, Sarah Hüttl, et al. "Entry, Replication, Immune Evasion, and Neurotoxicity of Synthetically Engineered Bat-Borne Mumps Virus." Cell Reports 25, no. 2 (2018): 312–20. https://doi.org/10.5281/zenodo.13452751.
Pełny tekst źródłaKrüger, Nadine, Christian Sauder, Sarah Hüttl, et al. "Entry, Replication, Immune Evasion, and Neurotoxicity of Synthetically Engineered Bat-Borne Mumps Virus." Cell Reports 25, no. 2 (2018): 312–20. https://doi.org/10.5281/zenodo.13452751.
Pełny tekst źródłaKrüger, Nadine, Christian Sauder, Sarah Hüttl, et al. "Entry, Replication, Immune Evasion, and Neurotoxicity of Synthetically Engineered Bat-Borne Mumps Virus." Cell Reports 25, no. 2 (2018): 312–20. https://doi.org/10.5281/zenodo.13452751.
Pełny tekst źródłaKrüger, Nadine, Christian Sauder, Sarah Hüttl, et al. "Entry, Replication, Immune Evasion, and Neurotoxicity of Synthetically Engineered Bat-Borne Mumps Virus." Cell Reports 25, no. 2 (2018): 312–20. https://doi.org/10.5281/zenodo.13452751.
Pełny tekst źródłaLiu, J., M. P. Ashton, H. Sumer, T. C. Brodnicki, M. K. O'Bryan, and P. J. Verma. "221 GENERATION OF GERM-LINE COMPETENT EMBRYONIC STEM CELLS FROM NON-OBESE DIABETIC (NOD) MICE USING A SINGLE INHIBITOR." Reproduction, Fertility and Development 24, no. 1 (2012): 222. http://dx.doi.org/10.1071/rdv24n1ab221.
Pełny tekst źródłaChen, Song-Lin, Zhen-Xia Sha, Han-Qing Ye, et al. "Pluripotency and Chimera Competence of an Embryonic Stem Cell Line from the Sea Perch (Lateolabrax japonicus)." Marine Biotechnology 9, no. 1 (2006): 82–91. http://dx.doi.org/10.1007/s10126-006-6050-1.
Pełny tekst źródłaDiego-Mantecón, José Manuel, Elena Haro, Teresa F. Blanco, and Avenilde Romo-Vázquez. "The chimera of the competency-based approach to teaching mathematics: a study of carpentry purchases for home projects." Educational Studies in Mathematics 107, no. 2 (2021): 339–57. http://dx.doi.org/10.1007/s10649-021-10032-5.
Pełny tekst źródłaLabosky, P. A., D. P. Barlow, and B. L. Hogan. "Mouse embryonic germ (EG) cell lines: transmission through the germline and differences in the methylation imprint of insulin-like growth factor 2 receptor (Igf2r) gene compared with embryonic stem (ES) cell lines." Development 120, no. 11 (1994): 3197–204. http://dx.doi.org/10.1242/dev.120.11.3197.
Pełny tekst źródłaBoyd, Nicholas, Kellie Cartledge, Huimin Cao, et al. "‘Off-the-Shelf’ Immunotherapy: Manufacture of CD8+ T Cells Derived from Hematopoietic Stem Cells." Cells 10, no. 10 (2021): 2631. http://dx.doi.org/10.3390/cells10102631.
Pełny tekst źródłaSato, Hideaki, Ayumi Wakayama, Kyoko Ito, Ikuo Kashiwakura, and Koichi Ito. "Functional Adaptive Immune Responses in Hematopoietic Chimeric Mice After Umbilical Cord Blood Cell Transplantation." Blood 120, no. 21 (2012): 2995. http://dx.doi.org/10.1182/blood.v120.21.2995.2995.
Pełny tekst źródła