Gotowa bibliografia na temat „Chlorure. carbonation”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Chlorure. carbonation”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Chlorure. carbonation"

1

Xu, Lina, Yan Zhang, Shuyuan Zhang, Shuyuan Fan, and Honglei Chang. "Effect of Carbonation on Chloride Maximum Phenomena of Concrete Subjected to Cyclic Wetting–Drying Conditions: A Numerical and Experimental Study." Materials 15, no. 8 (2022): 2874. http://dx.doi.org/10.3390/ma15082874.

Pełny tekst źródła
Streszczenie:
The combined action of chloride and carbonation generally accelerates chloride penetration in concrete. Plenty of studies have revealed a chloride maximum phenomenon in the chloride profiles of concrete under wetting and drying cycles, which affects the accuracy of the service life prediction of concrete structures. Carbonation is probably one of crucial factors inducing chloride maximum phenomena. To investigate the influence of carbonation on chloride distribution of concrete subjected to cyclic wetting–drying conditions, this study established a numerical model coupling carbonation effect,
Style APA, Harvard, Vancouver, ISO itp.
2

Yuan, Yezhen, Kaimin Niu, Bo Tian, Lijuan Kong, and Lihui Li. "Effect of Metakaolin on the Diffusion Properties of Chloride Ions in Cement Mortar under the Coupling Effect of Multiple Factors in Marine Environment." Advances in Civil Engineering 2023 (May 25, 2023): 1–15. http://dx.doi.org/10.1155/2023/6961234.

Pełny tekst źródła
Streszczenie:
To address the problem of chloride ion transport in cement concrete in marine environment, this study investigates the effect of metakaolin dosage on the chloride ion diffusion resistance of mortar and its mechanism by testing the chloride ion binding capacity and microstructure of mortar under the coupling effect of chlorine salt-sulfate-carbonation multiple factors. The results show that the coupling of sulfate or carbonation reduces chloride ion transport to some extent compared with single chlorine salt attack, while the three-factor coupled environment promotes free chloride ion diffusion
Style APA, Harvard, Vancouver, ISO itp.
3

Nakamura, Eisuke, Yuki Kurihara, and Hirohisa Koga. "Outdoor Exposure Test of Concrete Containing Supplementary Cementitious Materials." Key Engineering Materials 711 (September 2016): 1076–83. http://dx.doi.org/10.4028/www.scientific.net/kem.711.1076.

Pełny tekst źródła
Streszczenie:
An outdoor exposure test was conducted to investigate the resistances of concrete containing supplementary cementitious materials (SCMs) to carbonation and chloride ingress at three outdoor exposure testing sites in Japan. The test results indicated that concrete specimens containing larger amounts of SCMs exhibited larger carbonation depths but the carbonation rates decreased as the testing period was extended. Additionally, the resistance to chloride ingress was improved by the use of SCMs in cases where the carbonation depths were negligible. Concrete specimens containing high-volume SCMs,
Style APA, Harvard, Vancouver, ISO itp.
4

Chang, Wang, Jin, et al. "Durability and Aesthetics of Architectural Concrete under Chloride Attack or Carbonation." Materials 13, no. 4 (2020): 839. http://dx.doi.org/10.3390/ma13040839.

Pełny tekst źródła
Streszczenie:
Architectural concrete has been wildly used nowadays, and those served in an offshore environment often suffer from chloride penetration and carbonation. To assess the protection and decoration performances of architectural concrete, this study exposed architectural concrete to actual marine environments and accelerated carbonation conditions. The chloride and carbonation resistance of architectural concrete was determined to evaluate the protection performance, and the corresponding surface-color-consistency was adopted to characterize its decoration performance. The results show that the tot
Style APA, Harvard, Vancouver, ISO itp.
5

Chen, Chunhong, Ronggui Liu, Pinghua Zhu, Hui Liu, and Xinjie Wang. "Carbonization Durability of Two Generations of Recycled Coarse Aggregate Concrete with Effect of Chloride Ion Corrosion." Sustainability 12, no. 24 (2020): 10544. http://dx.doi.org/10.3390/su122410544.

Pełny tekst źródła
Streszczenie:
Carbonation durability is an important subject for recycled coarse aggregate concrete (RAC) applied to structural concrete. Extensive studies were carried out on the carbonation resistance of RAC under general environmental conditions, but limited researches investigated carbonation resistance when exposed to chloride ion corrosion, which is an essential aspect for reinforced concrete materials to be adopted in real-world applications. This paper presents a study on the carbonation durability of two generations of 100% RAC with the effect of chloride ion corrosion. The quality evolution of rec
Style APA, Harvard, Vancouver, ISO itp.
6

Yoon, In Seok. "Deterioration of Concrete Due to Combined Reaction of Carbonation and Chloride Penetration: Experimental Study." Key Engineering Materials 348-349 (September 2007): 729–32. http://dx.doi.org/10.4028/www.scientific.net/kem.348-349.729.

Pełny tekst źródła
Streszczenie:
In most studies, deterioration of concrete due to carbonation or chloride penetration is investigated separately. However, the deterioration of concrete is normally caused by the combination. The purpose of this study is to investigate the interaction between carbonation and chloride penetration and their effects on concrete. This was examined experimentally under various boundary conditions. For concrete under the double condition, the risk of deterioration due to carbonation was not severe. However, it was found that the carbonation of concrete could significantly accelerate chloride penetra
Style APA, Harvard, Vancouver, ISO itp.
7

Li, Zhen, Zhen He, and Xiaorun Chen. "The Performance of Carbonation-Cured Concrete." Materials 12, no. 22 (2019): 3729. http://dx.doi.org/10.3390/ma12223729.

Pełny tekst źródła
Streszczenie:
The research shows that carbonation-cured concrete has several mechanical and durability properties that are better than those of moisture-cured concrete. However, many properties of carbonation-cured concrete have not yet been studied. In this research, carbonation-cured concrete was prepared by pre-curing, carbonation curing, and then moisture curing. The compressive strength, CO2 uptake, pH value, chloride ion permeability and abrasion resistance of the carbonation-cured concrete were investigated. Results showed that the compressive strength of carbonation-cured concrete was more than 10%
Style APA, Harvard, Vancouver, ISO itp.
8

Chen, Xiangsheng, and Jun Shen. "Experimental Investigation on Deterioration Mechanisms of Concrete under Tensile Stress-Chloride Ion-Carbon Dioxide Multiple Corrosion Environment." Journal of Marine Science and Engineering 10, no. 1 (2022): 80. http://dx.doi.org/10.3390/jmse10010080.

Pełny tekst źródła
Streszczenie:
The adverse effects of a hostile marine environment on concrete structures inevitably result in great economic loss and may contribute to catastrophic failure. There is limited information on the durability of concrete in a tensile stress-chloride ion-carbon dioxide (TCC) multiple-corrosion environment. The objective of this study is to explore the impact of a TCC multiple-corrosion environment on concrete considering three coupled factors of compressive strength, Cl− penetration, and carbonation. Dry–wet cycle tests were conducted to determine the strength degradation and Cl− penetration conc
Style APA, Harvard, Vancouver, ISO itp.
9

Zhou, Xiangong, Xiaoyu Zhang, Gang Li, and Jialu Li. "Carbonation Characteristics and Bearing Capacity Attenuation of Loaded RC Beam Coupled with Chloride Erosion." Advances in Civil Engineering 2022 (July 15, 2022): 1–15. http://dx.doi.org/10.1155/2022/5365789.

Pełny tekst źródła
Streszczenie:
The durability of a concrete bridge structure is a systematic problem composed of material, structure, natural environment, and service environment. Various factors are coupled, which affect each other, and single-factor research cannot fundamentally solve this problem. In this paper, the carbonation characteristics of RC beams with different loading states under the coupling action of carbonation and chloride erosion are studied. Through the experiment, the author tries to find the influence of stress state and chloride ion erosion on the carbonation of concrete and analyze the failure mode a
Style APA, Harvard, Vancouver, ISO itp.
10

Haibier, Abuduhelili, and Yong Xin Wu. "Effects of Mineral Admixtures on Carbonation and Chloride Ingress of Concrete." Applied Mechanics and Materials 212-213 (October 2012): 878–82. http://dx.doi.org/10.4028/www.scientific.net/amm.212-213.878.

Pełny tekst źródła
Streszczenie:
Reinforcement corrosion is one important factor affecting the durability and safety of reinforced concrete structures. Concrete carbonation and chloride ion penetration is the main cause leading to steel corrosion, also important indicators affecting the service life of concrete structures. An accelerated carbonation experiment and Chloride penetration experiment was carried out on ordinary Portland cement (OPC) concrete and admixture concrete in various conditions. Eight concrete specimens of different mixture properties were tested in experiment. Resistance of OPC concrete system with and wi
Style APA, Harvard, Vancouver, ISO itp.
Więcej źródeł
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!