Artykuły w czasopismach na temat „CO2-based technology”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „CO2-based technology”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Gao, Shiwang, Dongfang Guo, Hongguang Jin, Sheng Li, Jinyi Wang, and Shiqing Wang. "Potassium Carbonate Slurry-Based CO2 Capture Technology." Energy & Fuels 29, no. 10 (2015): 6656–63. http://dx.doi.org/10.1021/acs.energyfuels.5b01421.
Pełny tekst źródłaZhumagaliyeva, А., V. Gargiulo, F. Raganat, Ye Doszhanov, and M. Alfe. "Carbon based nanocomposite material for CO2 capture technology." Горение и Плазмохимия 17, no. 1 (2019): 9–13. http://dx.doi.org/10.18321/cpc283.
Pełny tekst źródłaWang, Xiaolin, Shufan Yang, Hai Zhang, Xingguang Xu, Colin D. Wood, and Wojciech Lipiński. "Amine infused hydrogel-based CO2 gas storage technology for CO2 hydrate-based cold thermal energy storage." Journal of CO2 Utilization 53 (November 2021): 101705. http://dx.doi.org/10.1016/j.jcou.2021.101705.
Pełny tekst źródłaАрхипов, В. Н., А. А. Анкудинов, А. А. Мочалова, С. А. Ященко, and Г. В. Улыбышев. "CCUS technology from theory to practice." Нефтяная провинция 1, no. 4(36) (2023): 166–76. http://dx.doi.org/10.25689/np.2023.4.166-176.
Pełny tekst źródłaEspatolero, Sergio, and Luis M. Romeo. "Optimization of Oxygen-based CFBC Technology with CO2 Capture." Energy Procedia 114 (July 2017): 581–88. http://dx.doi.org/10.1016/j.egypro.2017.03.1200.
Pełny tekst źródłaLiu, Yudong, Guizhou Ren, Honghong Shen, Gang Liu, and Fangqin Li. "Technology of CO2 capture and storage." E3S Web of Conferences 118 (2019): 01046. http://dx.doi.org/10.1051/e3sconf/201911801046.
Pełny tekst źródłaLiu, Xiaolei, Caifang Wu, and Kai Zhao. "Feasibility and Applicability Analysis of CO2-ECBM Technology Based on CO2–H2O–Coal Interactions." Energy & Fuels 31, no. 9 (2017): 9268–74. http://dx.doi.org/10.1021/acs.energyfuels.7b01663.
Pełny tekst źródłaYang, Zhibin, Ze Lei, Ben Ge, et al. "Development of catalytic combustion and CO2 capture and conversion technology." International Journal of Coal Science & Technology 8, no. 3 (2021): 377–82. http://dx.doi.org/10.1007/s40789-021-00444-2.
Pełny tekst źródłaIgnatusha, Pavlo, Haiqing Lin, Noe Kapuscinsky, et al. "Membrane Separation Technology in Direct Air Capture." Membranes 14, no. 2 (2024): 30. http://dx.doi.org/10.3390/membranes14020030.
Pełny tekst źródłaGao, Lu, Ying Zang, Guangwu Zhao, et al. "Research on the Seed Respiration CO2 Detection System Based on TDLAS Technology." International Journal of Optics 2023 (March 22, 2023): 1–13. http://dx.doi.org/10.1155/2023/8017726.
Pełny tekst źródłaXing, Yi, Zhiliang Ma, Wei Su, Qunhui Wang, Xiaona Wang, and Hui Zhang. "Analysis of Research Status of CO2 Conversion Technology Based on Bibliometrics." Catalysts 10, no. 4 (2020): 370. http://dx.doi.org/10.3390/catal10040370.
Pełny tekst źródłaPratiwi, Vibianti Dwi, Renanto Renanto, Juwari Juwari, Ali Altway, and Rendra Panca Anugraha. "COST ANALYSIS OF THE PERFORMANCE OF CO2 SEPARATION WITH VARIOUS CO2 CONCENTRATIONS FROM GAS WELLS." Journal of Chemical Technology and Metallurgy 59, no. 4 (2024): 935–44. http://dx.doi.org/10.59957/jctm.v59.i4.2024.24.
Pełny tekst źródłaBardeau, Tiphaine, Raphaelle Savoire, Maud Cansell, and Pascale Subra-Paternault. "Recovery of oils from press cakes by CO2-based technology." OCL 22, no. 4 (2015): D403. http://dx.doi.org/10.1051/ocl/2015004.
Pełny tekst źródłaLiu, Tianqi. "Hydrate-Based Carbon Dioxide Capture Technology in the Ocean: Research Advances and Challenges." Advances in Engineering Technology Research 8, no. 1 (2023): 601. http://dx.doi.org/10.56028/aetr.8.1.601.2023.
Pełny tekst źródłaLou, Di Ming, Si Li Qian, Zhi Yuan Hu, and Pi Qiang Tan. "On-Road Gaseous Emission Characteristics of the Bus Based on DOC + CDPF Technology." Advanced Materials Research 726-731 (August 2013): 2234–40. http://dx.doi.org/10.4028/www.scientific.net/amr.726-731.2234.
Pełny tekst źródłaManovic, Vasilije, and Edward Anthony. "Improvement of CaO-based sorbent performance for CO2 looping cycles." Thermal Science 13, no. 1 (2009): 89–104. http://dx.doi.org/10.2298/tsci0901089m.
Pełny tekst źródłaEssounani-Mérida, Sofía, Sergio Molina-Ramírez, Marina Cortés-Reyes, Concepción Herrera, Mª Ángeles Larrubia, and Luis J. Alemany. "Influence of second metal incorporation on nickel-based unsupported catalysts for CO2 reduction (CO2-SR) Technology." Results in Engineering 26 (June 2025): 104921. https://doi.org/10.1016/j.rineng.2025.104921.
Pełny tekst źródłaWang, Zhelong. "Research Progress of Supercritical / Dense Phase CO2 Flow Metering Technology." Academic Journal of Science and Technology 14, no. 3 (2025): 76–84. https://doi.org/10.54097/wy5b9163.
Pełny tekst źródłaZhang, Siyuan, Chen Liang, Zhiping Zhu, and Ruifang Cui. "Experimental Study on the Thermal Reduction of CO2 by Activated Solid Carbon-Based Fuels." Energies 17, no. 9 (2024): 2164. http://dx.doi.org/10.3390/en17092164.
Pełny tekst źródłaRoth, Elliot A., Sushant Agarwal, and Rakesh K. Gupta. "Nanoclay-Based Solid Sorbents for CO2 Capture." Energy & Fuels 27, no. 8 (2013): 4129–36. http://dx.doi.org/10.1021/ef302017m.
Pełny tekst źródłaJiang, Kaiqi, Hai Yu, Jianglong Yu, and Kangkang Li. "Advancement of ammonia-based post-combustion CO2 capture technology: Process modifications." Fuel Processing Technology 210 (December 2020): 106544. http://dx.doi.org/10.1016/j.fuproc.2020.106544.
Pełny tekst źródłaYang, Mingjun, Yongchen Song, Lanlan Jiang, et al. "Hydrate-based technology for CO2 capture from fossil fuel power plants." Applied Energy 116 (March 2014): 26–40. http://dx.doi.org/10.1016/j.apenergy.2013.11.031.
Pełny tekst źródłaMcLarnon, Christopher R., and Joanna L. Duncan. "Testing of Ammonia Based CO2 Capture with Multi-Pollutant Control Technology." Energy Procedia 1, no. 1 (2009): 1027–34. http://dx.doi.org/10.1016/j.egypro.2009.01.136.
Pełny tekst źródłaJiang, Guodong, Qinglin Huang, Saeed Danaei Kenarsari, et al. "A new mesoporous amine-TiO2 based pre-combustion CO2 capture technology." Applied Energy 147 (June 2015): 214–23. http://dx.doi.org/10.1016/j.apenergy.2015.01.081.
Pełny tekst źródłaYang, Haoran, Mian Wei, Baodong Wang, et al. "Research on the Influence of a Magnesium-Based Carbon Dioxide Battery System on CO2 Storage Performance." Processes 12, no. 9 (2024): 1896. http://dx.doi.org/10.3390/pr12091896.
Pełny tekst źródłaHo, Quyen Bao Thuy, and Akira Suzuki. "TECHNOLOGY OF MUSHROOM CULTIVATION." Vietnam Journal of Science and Technology 57, no. 3 (2019): 265. http://dx.doi.org/10.15625/2525-2518/57/3/12954.
Pełny tekst źródłaHamid, Hira, Khurram Jawad, Rizwana Hayat, Shoaib Ghulam, and Shahzad Hussain. "Financial Inclusion, Technology Innovation and CO2 Emissions: International Evidence." Qlantic Journal of Social Sciences and Humanities 5, no. 3 (2024): 222–33. http://dx.doi.org/10.55737/qjssh.587103550.
Pełny tekst źródłaMetrikaitytė Gudelė, Gustė, and Jūratė Sužiedelytė Visockienė. "APPLICATION OF REMOTE SENSING FOR MONITORING CARBON FARMING: A REVIEW." Mokslas - Lietuvos ateitis 15 (August 21, 2023): 1–6. http://dx.doi.org/10.3846/mla.2023.19396.
Pełny tekst źródłaMonni, Noemi, Eduardo Andres-Garcia, Katia Caamaño, et al. "A thermally/chemically robust and easily regenerable anilato-based ultramicroporous 3D MOF for CO2 uptake and separation." Journal of Materials Chemistry A 9, no. 44 (2021): 25189–95. http://dx.doi.org/10.1039/d1ta07436a.
Pełny tekst źródłaLu, Yanjun, Jinxuan Han, Manping Yang, Xingyu Chen, Hongjian Zhu, and Zhaozhong Yang. "Molecular simulation of supercritical CO2 extracting organic matter from coal based on the technology of CO2-ECBM." Energy 266 (March 2023): 126393. http://dx.doi.org/10.1016/j.energy.2022.126393.
Pełny tekst źródłaYang, Wei, Meilong Fu, Yanping Wang, Jianqiang Lu, and Guojun Li. "Research on CO2 Quasi-Dry Fracturing Technology and Reservoir CO2 Distribution Pattern." Processes 13, no. 2 (2025): 472. https://doi.org/10.3390/pr13020472.
Pełny tekst źródłaFeng, Da-Ming, Ying Sun, Zhao-Qing Liu, Yun-Pei Zhu, and Tian-Yi Ma. "Designing Nanostructured Metal-Based CO2 Reduction Electrocatalysts." Journal of Nanoscience and Nanotechnology 19, no. 6 (2019): 3079–96. http://dx.doi.org/10.1166/jnn.2019.16648.
Pełny tekst źródłaHuang, Yuan Sheng, and Jie Xu. "Research on Carbon Emission Measurement of Electricity Sector Based on Scenario Analysis Method." Applied Mechanics and Materials 367 (August 2013): 327–32. http://dx.doi.org/10.4028/www.scientific.net/amm.367.327.
Pełny tekst źródłaOribayo, O., A. K. Bashorun, and O. A. George. "A TECHNICAL AND ECONOMIC COMPARISON OF CO2 REMOVAL TECHNOLOGIES IN AMMONIA PRODUCTION PLANTS." Open Journal of Engineering Science (ISSN: 2734-2115) 4, no. 2 (2023): 74–88. http://dx.doi.org/10.52417/ojes.v4i2.530.
Pełny tekst źródłaLi, Qiaoyun, Zhengfu Ning, Shuhong Wu, Baohua Wang, Qiang Li, and Hua Li. "A Multiphase and Multicomponent Model and Numerical Simulation Technology for CO2 Flooding and Storage." Energies 17, no. 13 (2024): 3222. http://dx.doi.org/10.3390/en17133222.
Pełny tekst źródłaWang, Fangtian, and Jinghong Yan. "CO2 Storage and Geothermal Extraction Technology for Deep Coal Mine." Sustainability 14, no. 19 (2022): 12322. http://dx.doi.org/10.3390/su141912322.
Pełny tekst źródłaTamilarasan, Saravana Kumar, Jobel Jose, Vignesh Boopalan, et al. "Recent Developments in Supercritical CO2-Based Sustainable Power Generation Technologies." Energies 17, no. 16 (2024): 4019. http://dx.doi.org/10.3390/en17164019.
Pełny tekst źródłaCarpenter, Chris. "Technology Focus: Drilling and Completion Fluids (November 2024)." Journal of Petroleum Technology 76, no. 11 (2024): 72–73. http://dx.doi.org/10.2118/1124-0072-jpt.
Pełny tekst źródłaChassé, Melissa, Raktim Sen, Alain Goeppert, G. K. Surya Prakash, and Neil Vasdev. "Polyamine based solid CO2 adsorbents for [11C]CO2 purification and radiosynthesis." Journal of CO2 Utilization 64 (October 2022): 102137. http://dx.doi.org/10.1016/j.jcou.2022.102137.
Pełny tekst źródłaOuyang, Chao, and Hsiao Wei Chen. "Value Chain Analysis for Microalgae-Based CO2 Capture: A Case Study." Advanced Materials Research 1079-1080 (December 2014): 558–61. http://dx.doi.org/10.4028/www.scientific.net/amr.1079-1080.558.
Pełny tekst źródłaVadillo, José Manuel, Guillermo Díaz-Sainz, Lucía Gómez-Coma, Aurora Garea, and Angel Irabien. "Chemical and Physical Ionic Liquids in CO2 Capture System Using Membrane Vacuum Regeneration." Membranes 12, no. 8 (2022): 785. http://dx.doi.org/10.3390/membranes12080785.
Pełny tekst źródłaAkenteng, Yaw Dwamena, Hao Chen, Kwame Nana Opoku, Fahim Ullah, Shuang Wang, and Sunel Kumar. "The Role of Computational Fluid Dynamics (CFD) in Phytohormone-Regulated Microalgae-Based Carbon Dioxide Capture Technology." Sustainability 17, no. 3 (2025): 860. https://doi.org/10.3390/su17030860.
Pełny tekst źródłaIshaq, Haris, and Curran Crawford. "CO2‑based alternative fuel production to support development of CO2 capture, utilization and storage." Fuel 331 (January 2023): 125684. http://dx.doi.org/10.1016/j.fuel.2022.125684.
Pełny tekst źródłaMurthy, Pradeep S., Weibin Liang, Yijiao Jiang, and Jun Huang. "Cu-Based Nanocatalysts for CO2 Hydrogenation to Methanol." Energy & Fuels 35, no. 10 (2021): 8558–84. http://dx.doi.org/10.1021/acs.energyfuels.1c00625.
Pełny tekst źródłaŚwierczek, Konrad, Hailei Zhao, Zijia Zhang, and Zhihong Du. "MIEC-type ceramic membranes for the oxygen separation technology." E3S Web of Conferences 108 (2019): 01021. http://dx.doi.org/10.1051/e3sconf/201910801021.
Pełny tekst źródłaZhang Zhiyan, 张志研, 牛奔 Niu Ben, 高文焱 Gao Wenyan, 侯玮 Hou Wei, and 林学春 Lin Xuechun. "Splicing Technology of Fiber Large Diameter End-Cap Based on CO2 Laser." Chinese Journal of Lasers 41, no. 7 (2014): 0703001. http://dx.doi.org/10.3788/cjl201441.0703001.
Pełny tekst źródłaHu, Mingqiang, Yaling Mu, and Hui Jin. "A bibliometric analysis of advances in CO2 reduction technology based on patents." Applied Energy 382 (March 2025): 125193. https://doi.org/10.1016/j.apenergy.2024.125193.
Pełny tekst źródłaRuiz, Claudia, Luis Rincón, Ricardo R. Contreras, Claudio Sidney, and Jorge Almarza. "Sustainable and Negative Carbon Footprint Solid-Based NaOH Technology for CO2 Capture." ACS Sustainable Chemistry & Engineering 8, no. 51 (2020): 19003–12. http://dx.doi.org/10.1021/acssuschemeng.0c07093.
Pełny tekst źródłaYang, Mingjun, Yongchen Song, Lanlan Jiang, Yu Liu, and Xiaojing Wang. "Behaviour of hydrate-based technology for H2/CO2 separation in glass beads." Separation and Purification Technology 141 (February 2015): 170–78. http://dx.doi.org/10.1016/j.seppur.2014.11.019.
Pełny tekst źródłaNakamura, Shiko, Yasuro Yamanaka, Toshiya Matsuyama, Shinya Okuno, and Hiroshi Sato. "IHI s Amine-Based CO2 Capture Technology for Coal Fired Power Plant." Energy Procedia 37 (2013): 1897–903. http://dx.doi.org/10.1016/j.egypro.2013.06.070.
Pełny tekst źródła