Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Coefficients du viriel.

Artykuły w czasopismach na temat „Coefficients du viriel”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Coefficients du viriel”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Montixi, G., i R. Coulon. "Coefficients du viriel de la réfractivité du méthane : comparaison avec le viriel diélectrique et l'absorption induite". Revue de Physique Appliquée 22, nr 9 (1987): 1007–12. http://dx.doi.org/10.1051/rphysap:019870022090100700.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Nhu, Nguyen Van, Gustavo A. Iglesias i Friedrich Kohler. "Correlation of Third Virial Coefficients to Second Virial Coefficients". Berichte der Bunsengesellschaft für physikalische Chemie 93, nr 4 (kwiecień 1989): 526–31. http://dx.doi.org/10.1002/bbpc.19890930418.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Holleran, Eugene. "Improved virial coefficients". Fluid Phase Equilibria 251, nr 1 (styczeń 2007): 29–32. http://dx.doi.org/10.1016/j.fluid.2006.10.026.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

HUANG, SSU-LI, i VENKAT R. BHETHANABOTLA. "VIRIAL COEFFICIENTS FOR THE HARD GAUSSIAN OVERLAP MODEL". International Journal of Modern Physics C 10, nr 02n03 (maj 1999): 361–74. http://dx.doi.org/10.1142/s0129183199000279.

Pełny tekst źródła
Streszczenie:
Monte Carlo estimates of virial coefficients up to the sixth for the Hard Gaussian Overlap (HGO) model are presented for values of the aspect ratio parameter κ of the model ranging from 0.05 to 10. The sixth coefficients are new and the lower coefficients are improvements on previous numerical estimates. The second virials are found to be in excellent agreement with an analytical integration reported in the literature. Padé (3, 3) approximations to the pressure and residual Helmholtz energy were constructed. Attempts to represent coefficients in these approximations by analytical functions of κ were not successful due to singularities in these functions. In the approximate range of 4.5≤κ≤ 5.5, the (3, 3) Padé approximations were found to be no better than lower ones. Comparisons with available Monte Carlo simulated pressures for moderately aspherical fluids were found to be good.
Style APA, Harvard, Vancouver, ISO itp.
5

Schultz, Andrew J., i David A. Kofke. "Interpolation of virial coefficients". Molecular Physics 107, nr 14 (20.07.2009): 1431–36. http://dx.doi.org/10.1080/00268970902922633.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Malijevský, Anatol, i Tomáš Hujo. "The Bender Equation of State and Virial Coefficients". Collection of Czechoslovak Chemical Communications 65, nr 9 (2000): 1464–70. http://dx.doi.org/10.1135/cccc20001464.

Pełny tekst źródła
Streszczenie:
The second and third virial coefficients calculated from the Bender equation of state (BEOS) are tested against experimental virial coefficient data. It is shown that the temperature dependences of the second and third virial coefficients as predicted by the BEOS are sufficiently accurate. We conclude that experimental second virial coefficients should be used to determine independently five of twenty constants of the Bender equation. This would improve the performance of the equation in a region of low-density gas, and also suppress correlations among the BEOS constants, which is even more important. The third virial coefficients cannot be used for the same purpose because of large uncertainties in their experimental values.
Style APA, Harvard, Vancouver, ISO itp.
7

Xu, Xia-Qing, i Mi Xie. "Virial coefficients expressed by heat kernel coefficients". Physics Letters A 382, nr 36 (wrzesień 2018): 2533–38. http://dx.doi.org/10.1016/j.physleta.2018.06.017.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Matsumoto, Akira. "Parameters of the Morse Potential from Second Virial Coefficients of Gases". Zeitschrift für Naturforschung A 42, nr 5 (1.05.1987): 447–50. http://dx.doi.org/10.1515/zna-1987-0505.

Pełny tekst źródła
Streszczenie:
An analytic expression for the second virial coefficient in case of the Morse potential is derived. The parameters of the Morse potential are determined for eighteen species comprising inert gases, diatomic and polyatomic molecules, and mixtures of gases using experimental second virial coefficients. The calculated second virial coefficients based on the obtained Morse potential agree well with the empirical second virial coefficients and their temperature dependence.
Style APA, Harvard, Vancouver, ISO itp.
9

Rouha, Michael, Ivo Nezbeda, Jan Hrubý i Filip Moučka. "Higher virial coefficients of water". Journal of Molecular Liquids 270 (listopad 2018): 81–86. http://dx.doi.org/10.1016/j.molliq.2017.11.105.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Mashkevich, Stefan, Jan Myrheim i Kåre Olaussen. "Virial coefficients of multispecies anyons". Physics Letters A 330, nr 3-4 (wrzesień 2004): 142–48. http://dx.doi.org/10.1016/j.physleta.2004.07.065.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Schultz, Andrew J., i David A. Kofke. "Virial coefficients of model alkanes". Journal of Chemical Physics 133, nr 10 (14.09.2010): 104101. http://dx.doi.org/10.1063/1.3486085.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Ushcats, M. V., S. J. Ushcats i A. A. Mochalov. "Virial Coefficients of Morse Potential". Ukrainian Journal of Physics 61, nr 2 (luty 2016): 160–67. http://dx.doi.org/10.15407/ujpe61.02.0160.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

BLAAK, RONALD, i BELA MULDER. "Virial coefficients of Onsager crosses". Molecular Physics 94, nr 2 (10.06.1998): 401–5. http://dx.doi.org/10.1080/00268979809482331.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Padilla, Paz, i Søren Toxværd. "Second virial coefficients ofn-alkanes". Molecular Physics 75, nr 5 (10.04.1992): 1143–54. http://dx.doi.org/10.1080/00268979200100881.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

López De Haro, Mariano, Anatol Malijevský i Stanislav Labík. "Critical consolute point in hard-sphere binary mixtures: Effect of the value of the eighth and higher virial coefficients on its location". Collection of Czechoslovak Chemical Communications 75, nr 3 (2010): 359–69. http://dx.doi.org/10.1135/cccc2009510.

Pełny tekst źródła
Streszczenie:
Various truncations for the virial series of a binary fluid mixture of additive hard spheres are used to analyze the location of the critical consolute point of this system for different size asymmetries. The effect of uncertainties in the values of the eighth virial coefficients on the resulting critical constants is assessed. It is also shown that a replacement of the exact virial coefficients in lieu of the corresponding coefficients in the virial expansion of the analytical Boublík–Mansoori–Carnahan–Starling–Leland equation of state, which still leads to an analytical equation of state, may lead to a critical consolute point in the system.
Style APA, Harvard, Vancouver, ISO itp.
16

TIAN, JIANXIANG. "INVESTIGATION OF THE PERTURBED VIRIAL EQUATIONS WITH ARBITRARY TEMPERATURE-DEPENDENT SECOND AND THIRD VIRIAL COEFFICIENTS". International Journal of Modern Physics B 25, nr 19 (30.07.2011): 2593–600. http://dx.doi.org/10.1142/s0217979211100734.

Pełny tekst źródła
Streszczenie:
In this paper, the perturbed virial equations of state with temperature-dependent virial coefficients are constructed using the Carnahan–Starling (CS) hard sphere equation as reference. Considering the second virial coefficient, some critical properties are interaction-independent and the critical packing factor is in the range of that of real fluids. But the critical compressibility factor and the liquid–vapor equilibrium properties disagree with experiments. When both the second and the third virial coefficient are considered, the critical properties are interaction-dependent but are out of the range of experimental results of real fluids. As a conclusion, the fourth virial coefficients are required for further consideration.
Style APA, Harvard, Vancouver, ISO itp.
17

BORGES, P. F., H. BOSCHI-FILHO i C. FARINA. "GENERALIZED PARTITION FUNCTIONS, INTERPOLATING STATISTICS AND HIGHER VIRIAL COEFFICIENTS". Modern Physics Letters A 14, nr 18 (14.06.1999): 1217–26. http://dx.doi.org/10.1142/s0217732399001310.

Pełny tekst źródła
Streszczenie:
Starting from determinants at finite temperature obeying an intermediate boundary condition between the periodic (bosonic) and antiperiodic (fermionic) cases, we find results which can be mapped onto those obtained from anyons for the second virial coefficient. Using this approach, we calculate the corresponding higher virial coefficients and compare them with the results in the literature.
Style APA, Harvard, Vancouver, ISO itp.
18

KRISTOFFERSEN, ANDERS, STEFAN MASHKEVICH, JAN MYRHEM i KÅRE OLAUSSEN. "THE FOURTH VIRIAL COEFFICIENT OF ANYONS". International Journal of Modern Physics A 13, nr 21 (20.08.1998): 3723–47. http://dx.doi.org/10.1142/s0217751x9800175x.

Pełny tekst źródła
Streszczenie:
We have computed by a Monte Carlo method the fourth virial coefficient of free anyons, as a function of the statistics angle θ. It can be fitted by a four term Fourier series, in which two coefficients are fixed by the known perturbative results at the boson and fermion points. We compute partition functions by means of path integrals, which we represent diagramatically in such a way that the connected diagrams give the cluster coefficients. This provides a general proof that all cluster and virial coefficients are finite. We give explicit polynomial approximations for all path integral contributions to all cluster coefficients, implying that only the second virial coefficient is statistics dependent, as is the case for two-dimensional exclusion statistics. The assumption leading to these approximations is that the tree diagrams dominate and factorize.
Style APA, Harvard, Vancouver, ISO itp.
19

Monago, Kenneth Osondu, i Charles Otobrise. "Virial coefficients of nitrogen from a quadrupolar site–site potential function". Journal of Theoretical and Computational Chemistry 15, nr 03 (maj 2016): 1650024. http://dx.doi.org/10.1142/s0219633616500243.

Pełny tekst źródła
Streszczenie:
This work describes a procedure for the numerical calculation of third virial coefficients of simple linear molecules. The method is applied to nitrogen using a site–site model pair-potential and the triple dipole term. Values of volumetric and acoustic second and third virial coefficients of nitrogen are reported over a wide range of temperature and compared with experimental data of several authors. The effect of including the quadrupole–quadrupole energy to the pair potential is investigated and the results suggest that the contributions of the quadrupole moment to second and third virial coefficients are non-negligible at low temperatures.
Style APA, Harvard, Vancouver, ISO itp.
20

Utgikar, Vivek. "Interpretation of Second Virial Coefficient". Journal of Chemical Education 77, nr 11 (listopad 2000): 1409. http://dx.doi.org/10.1021/ed077p1409.2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Mas, Eric M., Victor F. Lotrich i Krzysztof Szalewicz. "Third virial coefficient of argon". Journal of Chemical Physics 110, nr 14 (8.04.1999): 6694–701. http://dx.doi.org/10.1063/1.478575.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Filippov, L. P., N. L. Veretel'nikova i A. D. Okhotsimskii. "Second virial coefficient of vapors". Journal of Engineering Physics 48, nr 6 (czerwiec 1985): 706–9. http://dx.doi.org/10.1007/bf00870042.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Muga, J. G., i J. Veguillas. "Quantum second virial coefficient paradox". Physics Letters A 118, nr 8 (listopad 1986): 375–76. http://dx.doi.org/10.1016/0375-9601(86)90263-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Singh, Vivek Kumar, i K. N. Khanna. "Virial coefficients from equation of state". Journal of Molecular Liquids 107, nr 1-3 (wrzesień 2003): 41–57. http://dx.doi.org/10.1016/s0167-7322(03)00139-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Bokis, Costas P., Marc D. Donohue i Carol K. Hall. "Second virial coefficients for chain molecules". Industrial & Engineering Chemistry Research 33, nr 1 (styczeń 1994): 146–50. http://dx.doi.org/10.1021/ie00025a019.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Arteconi, Alessia, Giovanni Di Nicola, Giulio Santori i Roman Stryjek. "Second Virial Coefficients for Dimethyl Ether". Journal of Chemical & Engineering Data 54, nr 6 (11.06.2009): 1840–43. http://dx.doi.org/10.1021/je800939p.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Enciso, E., N. G. Almarza, M. A. González i F. J. Bermejo. "Virial coefficients of hard-sphere mixtures". Physical Review E 57, nr 4 (1.04.1998): 4486–90. http://dx.doi.org/10.1103/physreve.57.4486.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Polychronakos, Alexios P. "Virial Coefficients of Non-Abelian Anyons". Physical Review Letters 84, nr 6 (7.02.2000): 1268–71. http://dx.doi.org/10.1103/physrevlett.84.1268.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Subramanian, Ramachandran, Andrew J. Schultz i David A. Kofke. "Quantum virial coefficients of molecular nitrogen". Molecular Physics 115, nr 7 (3.03.2017): 869–78. http://dx.doi.org/10.1080/00268976.2017.1290842.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Schultz, Andrew J., i David A. Kofke. "Virial coefficients of Lennard-Jones mixtures". Journal of Chemical Physics 130, nr 22 (14.06.2009): 224104. http://dx.doi.org/10.1063/1.3148379.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Barreiros, Susana F., Jorge C. G. Calado, Manuel Nunes Da Ponte i Graham Saville. "Second virial coefficients of carbon monoxide". Journal of Chemical Thermodynamics 19, nr 9 (wrzesień 1987): 941–47. http://dx.doi.org/10.1016/0021-9614(87)90041-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Elliott, J. Richard. "On-the-Fly Second Virial Coefficients". Journal of Physical Chemistry B 125, nr 17 (27.04.2021): 4494–500. http://dx.doi.org/10.1021/acs.jpcb.1c01999.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Bugaev, K. A., A. I. Ivanytskyi, V. V. Sagun, E. G. Nikonov i G. M. Zinovjev. "Equation of State of Quantum Gases Beyond the Van der Waals Approximation". Ukrainian Journal of Physics 63, nr 10 (31.10.2018): 863. http://dx.doi.org/10.15407/ujpe63.10.863.

Pełny tekst źródła
Streszczenie:
A recently suggested equation of state with the induced surface tension is generalized to the case of quantum gases with mean-field interaction. The self-consistency conditions of such a model and the conditions necessary for the Third Law of thermodynamics to be satisfied are found. The quantum virial expansion of the van der Waals models of such a type is analyzed, and its virial coefficients are given. In contrast to traditional beliefs, it is shown that an inclusion of the third and higher virial coefficients of a gas of hard spheres into the interaction pressure of the van der Waals models either breaks down the Third Law of thermodynamics or does not allow one to go beyond the van der Waals approximation at low temperatures. It is demonstrated that the generalized equation of state with the induced surface tension allows one to avoid such problems and to safely go beyond the van der Waals approximation. In addition, the effective virial expansion for the quantum version of the induced surface tension equation of state is established, and all corresponding virial coefficients are found exactly. The explicit expressions for the true quantum virial coefficients of an arbitrary order of this equation of state are given in the low-density approximation. A few basic constraints on such models which are necessary to describe the nuclear and hadronic matter properties are discussed.
Style APA, Harvard, Vancouver, ISO itp.
34

BORGES, P. F., H. BOSCHI-FILHO i MARCELO HOTT. "VIRIAL COEFFICIENTS FROM (2 + 1)-DIMENSIONAL QED EFFECTIVE ACTIONS AT FINITE TEMPERATURE AND DENSITY". Modern Physics Letters A 17, nr 31 (10.10.2002): 2079–87. http://dx.doi.org/10.1142/s0217732302008630.

Pełny tekst źródła
Streszczenie:
From spinor and scalar (2 + 1)-dimensional QED effective actions at finite temperature and density in a constant magnetic field background, we calculate the corresponding virial coefficients for particles in the lowest Landau level. These coefficients depend on a parameter θ related to the time-component of the gauge field, which plays an essential role for large gauge invariance. The variation of the parameter θ might lead to an interpolation between fermionic and bosonic virial coefficients, although these coefficients are singular for θ = π/2.
Style APA, Harvard, Vancouver, ISO itp.
35

Kalmykov, G. I. "A representation of the Mayer expansion coefficients and virial coefficients". Theoretical and Mathematical Physics 84, nr 2 (sierpień 1990): 869–77. http://dx.doi.org/10.1007/bf01017685.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Anosova, J. P., V. V. Orlov i L. G. Kiseleva. "Virial Coefficient and Hidden Mass in the Galaxy Groups". International Astronomical Union Colloquium 124 (1990): 667–76. http://dx.doi.org/10.1017/s0252921100005807.

Pełny tekst źródła
Streszczenie:
AbstractThe purpose of this work is a verification of the virial mass estimations for small galaxy groups. The dynamical evolution of triple and quintuple galaxies has been studied by the numerical simulations. The dependence of the virial coefficient k(t) versus time was derived. Initially k(0) = 0. The function k(t) has some strong oscillations from 0.02 to 0.99. Generally, these oscillations are quasiperiodical ones. Such a behavior of k(t) is caused by formation in a system of close isolated temporary double subsystems. A strong correlation between the virial coefficient and the least mutual distance in the system is observed.
Style APA, Harvard, Vancouver, ISO itp.
37

Mokshyna, Elena, Pavel Polishchuk, Vadim Nedostup i Victor Kuz'min. "QSPR-Modeling for the Second Virial Cross-Coefficients of Binary Organic Mixtures". International Journal of Quantitative Structure-Property Relationships 1, nr 2 (lipiec 2016): 72–84. http://dx.doi.org/10.4018/ijqspr.2016070104.

Pełny tekst źródła
Streszczenie:
The second virial cross-coefficient is an important characteristic of the pair intermolecular interactions that describes solely the heterogeneous interactions. In the current study, the authors made the first attempt to develop rigorous QSPR models for analysis and prediction of the second virial cross-coefficient. Novel descriptors to describe pair intermolecular interactions were implemented. Statistical characteristics of the obtained models showed high performance. Prediction errors are comparable to the errors of data. Theoretically predicted values of the second virial cross-coefficient may be used to derive PVT-properties of mixtures at the different temperatures as well as to calculate intermolecular pair potential.
Style APA, Harvard, Vancouver, ISO itp.
38

URRUTIA, I., i J. A. HERNANDO. "Virial series around non-null density: density dependence of virial coefficients". Molecular Physics 100, nr 23 (10.12.2002): 3771–75. http://dx.doi.org/10.1080/00268970210161948.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

GAVRILIK, A. M., i A. P. REBESH. "DEFORMED GAS OF p, q-BOSONS: VIRIAL EXPANSION AND VIRIAL COEFFICIENTS". Modern Physics Letters B 26, nr 05 (20.02.2012): 1150030. http://dx.doi.org/10.1142/s0217984911500308.

Pełny tekst źródła
Streszczenie:
In the study of many-particle systems both the interaction of particles can be essential and such feature as their internal (composite) structure. To describe these aspects, the theory of deformed oscillators is very efficient. Viewing the particles as p, q-deformed bosons, in the corresponding p, q-Bose gas model we obtain in explicit form virial expansion along with the 2nd to 5th virial coefficients. The obtained virial coefficients depend on the deformation parameters p, q in the form symmetric under p ↔ q, and at p → 1, q → 1 turn into those known for usual bosons. Besides real parameters, we analyze the case of complex mutually conjugate p and q and find interesting implications. Also, the critical temperature is derived (for the p, q-Bose gas) and compared with the Tc of standard case of bosons condensation. Similar results are presented for the deformed Bose gas model of the Tamm–Dancoff (TD) type.
Style APA, Harvard, Vancouver, ISO itp.
40

JELLAL, AHMED, i HENDRIK B. GEYER. "SECOND VIRIAL COEFFICIENT FOR NONCOMMUTATIVE SPACE". Modern Physics Letters A 18, nr 13 (30.04.2003): 927–35. http://dx.doi.org/10.1142/s0217732303009964.

Pełny tekst źródła
Streszczenie:
The second virial coefficient [Formula: see text] for non-interacting particles moving in a two-dimensional noncommutative space and in the presence of a uniform magnetic field B is presented. The noncommutativity parameter θ can be chosen such that the [Formula: see text] can be interpreted as the second virial coefficient for anyons of statistics α in the presence of B and living on the commuting plane. In particular in the high temperature limit β → 0, we establish a relation between the parameter θ and the statistics α. Moreover, [Formula: see text] can also be interpreted in terms of composite fermions.
Style APA, Harvard, Vancouver, ISO itp.
41

Shaul, Katherine R. S., Andrew J. Schultz i David A. Kofke. "The effect of truncation and shift on virial coefficients of Lennard–Jones potentials". Collection of Czechoslovak Chemical Communications 75, nr 4 (2010): 447–62. http://dx.doi.org/10.1135/cccc2009113.

Pełny tekst źródła
Streszczenie:
We present virial coefficients of up to fifth order computed by Mayer-sampling Monte Carlo for several truncated-and-shifted Lennard–Jones potentials. We employ these coefficients within the virial equation of state to compute vapor-branch spinodals and critical points for each potential considered. We find that truncation distances of 5.0σ and higher yield values in significantly better agreement with those of the unmodified potential than those resulting from the more commonly used truncation distances of 2.5 and 3.0σ. We also employ these virial coefficients to examine the perturbed virial expansion method of Nezbeda and Smith for estimating the critical point. We find that the first-order perturbation performs well in characterizing the effect of potential truncation on the critical point for the truncation distances considered, with errors in critical temperatures ranging from –3 to +2% and errors in critical densities about constant at –22%. Addition of higher-order terms to the perturbation treatment brings it closer to the behavior given by the virial equation of state, which at fifth order underestimates the critical temperatures by 2 to 4% and the critical densities by 20 to 30%.
Style APA, Harvard, Vancouver, ISO itp.
42

Hanson, Mervin P. "The Virial Theorem, Perfect Gases, and the Second Virial Coefficient". Journal of Chemical Education 72, nr 4 (kwiecień 1995): 311. http://dx.doi.org/10.1021/ed072p311.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

DUTT, RANABIR, ASIM GANGOPADHYAYA, AVINASH KHARE i UDAY P. SUKHATME. "THERMODYNAMICS OF A FREE q-FERMION GAS". International Journal of Modern Physics A 09, nr 15 (20.06.1994): 2687–98. http://dx.doi.org/10.1142/s0217751x94001084.

Pełny tekst źródła
Streszczenie:
We study the thermodynamics of a q-fermion gas for complex values of q on the unit circle. Special emphasis is given to the study of the virial coefficients and the specific heat of this gas. In particular, it is shown that if any state can accommodate up to p q-fermions, then the first p virial coefficients of such a gas are the same as that of a gas of free bosons. Explicit expressions for the deviation of higher virial coefficients from the corresponding values for a Bose gas are obtained. Further, as for ordinary fermions, it is shown that the specific heat of a q-fermion gas at low temperature is proportional to T. Numerical computations show that the derivative of the specific heat as a function of T has no discontinuity.
Style APA, Harvard, Vancouver, ISO itp.
44

Pavlíček, Jan, Karel Aim i Tomáš Boublík. "The Second Virial Coefficients of n-Alkanes and Their Mixtures from the Kihara Convex Core Intermolecular Pair Potential". Collection of Czechoslovak Chemical Communications 58, nr 10 (1993): 2489–504. http://dx.doi.org/10.1135/cccc19932489.

Pełny tekst źródła
Streszczenie:
The second virial coefficients for a series of C2 to C8 n-alkanes and the second virial cross coefficients for their binary mixtures were calculated as a function of temperature from the exact expressions derived for the Kihara rod-like molecules. The three parameters of Kihara pair potential, ε/k, σ and l for the individual compounds were either used as determined from vapour-liquid equilibrium and saturated liquid density data in a previous study or with ε/k adjusted to the second virial coefficient data. The results are accurate almost within experimental uncertainty estimates of the data. In the case of mixtures the second virial cross coefficients were calculated from a similar expression in which only the ε12/k parameter was adjusted whereas σ12 = (σ1 + σ2)/2 and l1 and l2 of pure compounds were employed. It appears that the correction factor to the geometric mean combining rule for ε12/k is always less than and close to unity. Comparison with the values obtained from the Tsonopoulos generalized correlation reveals fair agreement between the characteristic binary k12 parameters from the two methods.
Style APA, Harvard, Vancouver, ISO itp.
45

Reddy, M. Rami, i Seamus F. O'Shea. "The equation of state of the two-dimensional Lennard–Jones fluid". Canadian Journal of Physics 64, nr 6 (1.06.1986): 677–84. http://dx.doi.org/10.1139/p86-125.

Pełny tekst źródła
Streszczenie:
By combining pressure and energy data from the virial equation of state, through fifth virial coefficients, with the second and third virial coefficients themselves and the results of computer-simulation calculations, we have constructed an equation of state for the two-dimensional Lennard–Jones fluid for 0.45 ≤ T* ≤ 5 and 0.01 ≤ ρ* ≤ 0.8. The fitted data include some in the metastable region, and, therefore, the equation of state also describes "van der Waals loops" including unstable regions. The form used is a modified Benedict–Webb–Rubin equation having 33 parameters including one nonlinear one. The fitting was done using a nonlinear least squares algorithm based on a Levenberg–Marquardt method. A total of 211 simulation points, 97 reported here for the first time, were used in the fitting, and the overall standard deviation is less than 2% for both energy and pressure. Second and third virial coefficients derived from the fit in the supercritical region are in excellent agreement with exact values. The critical constants derived from the fit are in reasonable agreement with published estimates.
Style APA, Harvard, Vancouver, ISO itp.
46

Wisniak, Jaime. "Interpretation of the Second Virial Coefficient". Journal of Chemical Education 76, nr 5 (maj 1999): 671. http://dx.doi.org/10.1021/ed076p671.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

WERTHEIM, M. S. "Third virial coefficient of hard spheroids". Molecular Physics 99, nr 3 (10.02.2001): 187–96. http://dx.doi.org/10.1080/00268970010008397.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Korvezee, A. E. "The second virial coefficient of benzene". Recueil des Travaux Chimiques des Pays-Bas 70, nr 8 (2.09.2010): 697–710. http://dx.doi.org/10.1002/recl.19510700809.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Wang, Xiaowei, i Frederick A. Bettelheim. "Second virial coefficient of α-crystallin". Proteins: Structure, Function, and Genetics 5, nr 2 (1989): 166–69. http://dx.doi.org/10.1002/prot.340050211.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Kaplun, Alexander, i Arkadiy Meshalkin. "Equation for the second virial coefficient". High Temperatures-High Pressures 31, nr 3 (1999): 253–58. http://dx.doi.org/10.1068/htmos1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii