Gotowa bibliografia na temat „Combustion Simulations”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Combustion Simulations”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Combustion Simulations"

1

Rowan, Steven L., Ismail B. Celik, Albio D. Gutierrez, and Jose Escobar Vargas. "A Reduced Order Model for the Design of Oxy-Coal Combustion Systems." Journal of Combustion 2015 (2015): 1–9. http://dx.doi.org/10.1155/2015/943568.

Pełny tekst źródła
Streszczenie:
Oxy-coal combustion is one of the more promising technologies currently under development for addressing the issues associated with greenhouse gas emissions from coal-fired power plants. Oxy-coal combustion involves combusting the coal fuel in mixtures of pure oxygen and recycled flue gas (RFG) consisting of mainly carbon dioxide (CO2). As a consequence, many researchers and power plant designers have turned to CFD simulations for the study and design of new oxy-coal combustion power plants, as well as refitting existing air-coal combustion facilities to oxy-coal combustion operations. While C
Style APA, Harvard, Vancouver, ISO itp.
2

Li, Zhongwen, Jingbo Wang, and Xiangyuan Li. "Combustion simulations of scramjet combustor using reduced mechanism of surrogate fuel for regenerative cooling pyrolysis products." Thermal Science, no. 00 (2024): 114. http://dx.doi.org/10.2298/tsci231223114l.

Pełny tekst źródła
Streszczenie:
Taking the surrogate fuel (64% ethylene and 36% methane in mole percentage) for regenerative cooling pyrolysis products used in HIFiRE-2 scramjet combustor as an example, present work systematically explores the workflow of the integrated mechanism reduction for surrogate fuel of pyrolysis products, the kinetic performance verification of the preferred reduced mechanism, and the combustion simulation application of the reduced mechanism in scramjet combustor. A static integrated reduction strategy is performed to obtain reduced mechanism for the surrogate fuel with the NUIGMech1.2 as detailed
Style APA, Harvard, Vancouver, ISO itp.
3

Åkerblom, Arvid, Francesco Pignatelli, and Christer Fureby. "Numerical Simulations of Spray Combustion in Jet Engines." Aerospace 9, no. 12 (2022): 838. http://dx.doi.org/10.3390/aerospace9120838.

Pełny tekst źródła
Streszczenie:
The aviation sector is facing a massive change in terms of replacing the currently used fossil jet fuels (Jet A, JP5, etc.) with non-fossil jet fuels from sustainable feedstocks. This involves several challenges and, among them, we have the fundamental issue of current jet engines being developed for the existing fossil jet fuels. To facilitate such a transformation, we need to investigate the sensitivity of jet engines to other fuels, having a wider range of thermophysical specifications. The combustion process is particularly important and difficult to characterize with respect to fuel chara
Style APA, Harvard, Vancouver, ISO itp.
4

Sikorski, K., Kwan Liu Ma, Philip J. Smith, and Bradley R. Adams. "Distributed combustion simulations." Energy & Fuels 7, no. 6 (1993): 902–5. http://dx.doi.org/10.1021/ef00042a029.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Pries, Michael, Andreas Fiolitakis, and Peter Gerlinger. "Numerical Investigation of a High Momentum Jet Flame at Elevated Pressure: A Quantitative Validation with Detailed Experimental Data." Journal of the Global Power and Propulsion Society 4 (December 18, 2020): 264–73. http://dx.doi.org/10.33737/jgpps/130031.

Pełny tekst źródła
Streszczenie:
The development of efficient low emission combustion systems requires methods for an accurate and reliable prediction of combustion processes. Computational Fluid Dynamics (CFD) in combination with combustion modelling is an important tool to achieve this goal. For an accurate computation adequate boundary conditions are crucial. Especially data for the temperature distribution on the walls of the combustion chamber are usually not available. The present work focuses on numerical simulations of a high momentum jet flame in a single nozzle FLOX® type model combustion chamber at elevated pressur
Style APA, Harvard, Vancouver, ISO itp.
6

Tamanampudi, Gowtham Manikanta Reddy, Swanand Sardeshmukh, William Anderson, and Cheng Huang. "Combustion instability modeling using multi-mode flame transfer functions and a nonlinear Euler solver." International Journal of Spray and Combustion Dynamics 12 (January 2020): 175682772095032. http://dx.doi.org/10.1177/1756827720950320.

Pełny tekst źródła
Streszczenie:
Modern methods for predicting combustion dynamics in high-pressure combustors range from high-fidelity simulations of sub-scale model combustors, mostly for validation purposes or detailed investigations of physics, to linearized, acoustics-based analysis of full-scale practical combustors. Whereas the high-fidelity simulations presumably capture the detailed physics of mixing and heat addition, computational requirements preclude their application for practical design analysis. The linear models that are used during design typically use flame transfer functions that relate the unsteady heat a
Style APA, Harvard, Vancouver, ISO itp.
7

Sehole, Hafiz Ali Haider, Ghazanfar Mehdi, Rizwan Riaz, and Adnan Maqsood. "Investigation of Sustainable Combustion Processes of the Industrial Gas Turbine Injector." Processes 13, no. 4 (2025): 960. https://doi.org/10.3390/pr13040960.

Pełny tekst źródła
Streszczenie:
This study investigates the combustion dynamics of methane in a dual swirl combustor, focusing on improving combustion efficiency and understanding flow features. Methane, as a conventional fuel, offers high energy content and relatively low carbon emissions compared to other hydrocarbons, making it a promising choice for sustainable energy solutions. Accurate numerical models are essential for the optimization of combustion processes, particularly in the design of combustion engines utilizing methane. In this work, we employ a partially premixed combustion model based on a mixture fraction an
Style APA, Harvard, Vancouver, ISO itp.
8

Fooladgar, Ehsan, and C. K. Chan. "Large Eddy Simulation of a Swirl-Stabilized Pilot Combustor from Conventional to Flameless Mode." Journal of Combustion 2016 (2016): 1–16. http://dx.doi.org/10.1155/2016/8261560.

Pełny tekst źródła
Streszczenie:
This paper investigates flame and flow structure of a swirl-stabilized pilot combustor in conventional, high temperature, and flameless modes by means of a partially stirred reactor combustion model to provide a better insight into designing lean premixed combustion devices with preheating system. Finite rate chemistry combustion model with one step tuned mechanism and large eddy simulation is used to numerically simulate six cases in these modes. Results show that moving towards high temperature mode by increasing the preheating level, the combustor is prone to formation of thermalNOxwith hig
Style APA, Harvard, Vancouver, ISO itp.
9

Thelen, Bryce C., and Elisa Toulson. "A computational study on the effect of the orifice size on the performance of a turbulent jet ignition system." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 231, no. 4 (2016): 536–54. http://dx.doi.org/10.1177/0954407016659199.

Pełny tekst źródła
Streszczenie:
Fully three-dimensional computational fluid dynamic simulations with detailed combustion chemistry of a turbulent jet ignition system installed in a rapid compression machine are presented. The turbulent jet ignition system is a prechamber-initiated combustion system intended to allow lean-burn combustion in spark ignition internal-combustion engines. In the presented configuration, the turbulent jet ignition prechamber has a volume that is 2% of the volume of the main combustion chamber in the rapid compression machine and is separated from the main chamber by a nozzle containing a single ori
Style APA, Harvard, Vancouver, ISO itp.
10

Meng, Nan, and Feng Li. "Large-Eddy Simulations of Unsteady Reaction Flow Characteristics Using Four Geometrical Combustor Models." Aerospace 10, no. 2 (2023): 147. http://dx.doi.org/10.3390/aerospace10020147.

Pełny tekst źródła
Streszczenie:
Combustion instability constitutes the primary loss source of combustion chambers, gas turbines, and aero engines, and it affects combustion performance or results in a sudden local oscillation. Therefore, this study investigated the factors affecting flame fluctuation on unsteady combustion flow fields through large-eddy simulations. The effects of primary and secondary holes in a triple swirler staged combustor on flame propagation and pressure fluctuation in a combustion field were studied. Moreover, the energy oscillations and dominant frequencies in the combustion field were obtained usin
Style APA, Harvard, Vancouver, ISO itp.
Więcej źródeł

Rozprawy doktorskie na temat "Combustion Simulations"

1

Tajiri, Kazuya. "Simulations of combustion dynamics in pulse combustor." Thesis, Georgia Institute of Technology, 2001. http://hdl.handle.net/1853/12175.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Sone, Kazuo. "Unsteady simulations of mixing and combustion in internal combustion engines." Thesis, Georgia Institute of Technology, 2001. http://hdl.handle.net/1853/12171.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Hilbert, Renan. "Etude de la combustion turbulente non prémélangée et partiellement prémélangée par simulations numériques directes." Châtenay-Malabry, Ecole centrale de Paris, 2002. http://www.theses.fr/2002ECAP0856.

Pełny tekst źródła
Streszczenie:
Ce travail présente l’étude de flammes turbulentes non-prémélangées et partiellement prémélangées par simulations numériques directes (DNS) en utilisant des modèles détaillés de chimie de transport. L’interaction entre une flamme H2/Air et un champ de turbulence est simulée et l’influence de la diffusion différentielle sur la structure de la flamme est qualifiée. On note en particulier l’absence de corrélation entre la température de flamme et le taux de dissipation scalaire quand un modèle de transport élaboré est utilisé, ainsi qu’une modification de la limite d’équilibre. Le ré-établissemen
Style APA, Harvard, Vancouver, ISO itp.
4

Aubagnac-Karkar, Damien. "Sectional soot modeling for Diesel RANS simulations." Thesis, Châtenay-Malabry, Ecole centrale de Paris, 2014. http://www.theses.fr/2014ECAP0061/document.

Pełny tekst źródła
Streszczenie:
Les particules de suies issues de moteur Diesel constituent un enjeu de santé publique et sont soumises à des réglementations de plus en plus strictes. Les constructeurs automobiles ont donc besoin de modèles capables de prédire l’évolution en nombre et en taille de ces particules de suies. Dans ce cadre, un modèle de suies basé sur une représentation sectionnelle de la phase solide est proposé dans cette thèse. Le choix de ce type d’approche est d’abord justifié par l’étude de l’état de l’art de la modélisation des suies. Le modèle de suies proposé est ensuite décrit. A chaque instant et en c
Style APA, Harvard, Vancouver, ISO itp.
5

Lindberg, Jenny. "Experiments and simulations of lean methane combustion." Licentiate thesis, Luleå, 2004. http://epubl.luth.se/1402-1757/2004/61.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Shaw, Rebecca Custis Riehl. "Combining combustion simulations with complex chemical kinetics." Thesis, University of Cambridge, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.648248.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Calhoon, William Henry Jr. "On subgrid combustion modeling for large-eddy simulations." Diss., Georgia Institute of Technology, 1996. http://hdl.handle.net/1853/12336.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Fujita, Akitoshi. "Numerical Simulations of Spray Combustion and Droplet Evaporation." 京都大学 (Kyoto University), 2011. http://hdl.handle.net/2433/142213.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Barsanti, Patricia Sylvia. "Simulations of confined turbulent explosions." Thesis, University of Cambridge, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.261538.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Correa, Chrys. "Combustion simulations in Diesel engines using reduced reaction mechanisms." [S.l. : s.n.], 2000. http://deposit.ddb.de/cgi-bin/dokserv?idn=961521937.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Więcej źródeł

Książki na temat "Combustion Simulations"

1

Singh, Akhilendra Pratap, Pravesh Chandra Shukla, Joonsik Hwang, and Avinash Kumar Agarwal, eds. Simulations and Optical Diagnostics for Internal Combustion Engines. Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-0335-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Pitsch, Heinz, and Antonio Attili, eds. Data Analysis for Direct Numerical Simulations of Turbulent Combustion. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-44718-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Merci, Bart, Dirk Roekaerts, and Amsini Sadiki, eds. Experiments and Numerical Simulations of Diluted Spray Turbulent Combustion. Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-1409-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Merci, Bart, and Eva Gutheil, eds. Experiments and Numerical Simulations of Turbulent Combustion of Diluted Sprays. Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04678-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Caton, Jerald A., ed. An Introduction to Thermodynamic Cycle Simulations for Internal Combustion Engines. John Wiley & Sons, Ltd, 2015. http://dx.doi.org/10.1002/9781119037576.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Caton, J. A. An introduction to thermodynamic cycle simulations for internal combustion engines. John Wiley & Sons Inc, 2015.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Rocker, M. Modeling on nonacoustic combustion instability in simulations of hybrid motor tests. National Aeronautics and Space Administration, Marshall Space Flight Center, 2000.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Center, Langley Research, ed. Simulations of diffusion-reaction equations with implications to turbulent combustion modeling. National Aeronautics and Space Administration, Langley Research Center, 1993.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Center, Langley Research, ed. Simulations of diffusion-reaction equations with implications to turbulent combustion modeling. National Aeronautics and Space Administration, Langley Research Center, 1993.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Girimaji, Sharath S. Simulations of diffusion-reaction equations with implications to turbulent combustion modeling. Institute for Computer Applications in Science and Engineering, 1993.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Więcej źródeł

Części książek na temat "Combustion Simulations"

1

Durst, Bodo. "3D Supercharging Simulations." In Combustion Engines Development. Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-14094-5_15.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Streett, Craig L. "Group Summary: Simulations I." In Transition, Turbulence and Combustion. Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1032-7_26.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Erlebacher, Gordon. "Group Summary: Simulations II." In Transition, Turbulence and Combustion. Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1032-7_33.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Ray, J., R. Armstrong, C. Safta, B. J. Debusschere, B. A. Allan, and H. N. Najm. "Computational Frameworks for Advanced Combustion Simulations." In Turbulent Combustion Modeling. Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-0412-1_17.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Winke, Florian. "Internal Combustion Engine." In Transient Effects in Simulations of Hybrid Electric Drivetrains. Springer Fachmedien Wiesbaden, 2018. http://dx.doi.org/10.1007/978-3-658-22554-4_3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Seitz, Timo, Ansgar Lechtenberg, and Peter Gerlinger. "Rocket Combustion Chamber Simulations Using High-Order Methods." In Notes on Numerical Fluid Mechanics and Multidisciplinary Design. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-53847-7_24.

Pełny tekst źródła
Streszczenie:
Abstract High-order spatial discretizations significantly improve the accuracy of flow simulations. In this work, a multi-dimensional limiting process with low diffusion (MLP$$^\text {ld}$$) and up to fifth order accuracy is employed. The advantage of MLP is that all surrounding volumes of a specific volume may be used to obtain cell interface values. This prevents oscillations at oblique discontinuities and improves convergence. This numerical scheme is utilized to investigate three different rocket combustors, namely a seven injector methane/oxygen combustion chamber, the widely simulated PennState preburner combustor and a single injector chamber called BKC, where pressure oscillations are important.
Style APA, Harvard, Vancouver, ISO itp.
7

Fru, G., H. Shalaby, A. Laverdant, C. Zistl, G. Janiga, and D. Thévenin. "Direct Numerical Simulations of turbulent flames to analyze flame/acoustic interactions." In Combustion Noise. Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02038-4_9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Traxinger, Christoph, Julian Zips, Christian Stemmer, and Michael Pfitzner. "Numerical Investigation of Injection, Mixing and Combustion in Rocket Engines Under High-Pressure Conditions." In Notes on Numerical Fluid Mechanics and Multidisciplinary Design. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-53847-7_13.

Pełny tekst źródła
Streszczenie:
Abstract The design and development of future rocket engines severely relies on accurate, efficient and robust numerical tools. Large-Eddy Simulation in combination with high-fidelity thermodynamics and combustion models is a promising candidate for the accurate prediction of the flow field and the investigation and understanding of the on-going processes during mixing and combustion. In the present work, a numerical framework is presented capable of predicting real-gas behavior and nonadiabatic combustion under conditions typically encountered in liquid rocket engines. Results of Large-Eddy Simulations are compared to experimental investigations. Overall, a good agreement is found making the introduced numerical tool suitable for the high-fidelity investigation of high-pressure mixing and combustion.
Style APA, Harvard, Vancouver, ISO itp.
9

Veynante, Denis. "Large Eddy Simulations of Turbulent Combustion." In Notes on Numerical Fluid Mechanics and Multidisciplinary Design. Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-00262-5_6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Lankhorst, Adriaan M., and Johannes F. M. Velthuis. "Ceramic recuperative radiant tube burners : simulations and experiments." In Transport Phenomena In Combustion. Routledge, 2024. https://doi.org/10.1201/9780203735138-128.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Combustion Simulations"

1

Chen, Jacqueline. "Combustion---Terascale direct numerical simulations of turbulent combustion." In the 2006 ACM/IEEE conference. ACM Press, 2006. http://dx.doi.org/10.1145/1188455.1188513.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

"NEURAL NETWORKS IN COMBUSTION SIMULATIONS." In International Conference on Neural Computation. SciTePress - Science and and Technology Publications, 2010. http://dx.doi.org/10.5220/0003073904060410.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Ingenito, Antonella, Claudio Bruno, Eugenio Giacomazzi, and Johan Steelant. "Supersonic Combustion: Modelling and Simulations." In 14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference. American Institute of Aeronautics and Astronautics, 2006. http://dx.doi.org/10.2514/6.2006-8035.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Gonzalez, Esteban. "Numerical Simulations of Thermoacoustic Combustion Instabilities in the Volvo Combustor." In 53rd AIAA/SAE/ASEE Joint Propulsion Conference. American Institute of Aeronautics and Astronautics, 2017. http://dx.doi.org/10.2514/6.2017-4686.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Duwig, Christophe, Jan Fredriksson, and Torsten Fransson. "Adaptation of a Combustion Chamber for Gasified Biomass Combustion: Numerical Simulations." In ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-1658.

Pełny tekst źródła
Streszczenie:
Abstract A gas turbine combustor was modified for addition of Low Heating Value (LHV) gas operation while retaining the original diesel option. New fuel inlets were designed and tested through numerical simulations. CFD calculations have been made in order to investigate the new design combustion abilities. A commercial 3D finite-volume Navier-Stokes solver was used. The Eddy Dissipation model was used to simulate the combustion phenomena and the flow fields were given by using k-ε model, Algebraic Stress Models and Reynolds Stress Model. The comparison between predictions using different turb
Style APA, Harvard, Vancouver, ISO itp.
6

Poinsot, Thierry, Christian Angelberger, Fokion Egolfopoulos, and Denis Veynante. "LARGE EDDY SIMULATIONS OF COMBUSTION INSTABILITIES." In First Symposium on Turbulence and Shear Flow Phenomena. Begellhouse, 1999. http://dx.doi.org/10.1615/tsfp1.10.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Singh, Kapil, Bala Varatharajan, Ertan Yilmaz, Fei Han, and Kwanwoo Kim. "Effect of Hydrogen Combustion on the Combustion Dynamics of a Natural Gas Combustor." In ASME Turbo Expo 2008: Power for Land, Sea, and Air. ASMEDC, 2008. http://dx.doi.org/10.1115/gt2008-51343.

Pełny tekst źródła
Streszczenie:
In a carbon-constrained world, Integrated Gasification Combined Cycle (IGCC) systems achieve excellent environmental performance and offer a more economical pre-combustion CO2 removal compared to other coal-based systems. The residual gas after carbon removal is comprised primarily of hydrogen and nitrogen mixtures. Achieving stable combustion of hydrogen-rich fuel mixtures while producing ultra-low NOx emissions (much lower than current diffusion combustion technology) is challenging. The goal of this study was to characterize the stability of lean premixed combustion systems operating with h
Style APA, Harvard, Vancouver, ISO itp.
8

MENON, SURESH, and WEN-HUEI JOU. "Large-eddy simulations of combustion instability in an axisymmetric ramjet combustor." In 28th Aerospace Sciences Meeting. American Institute of Aeronautics and Astronautics, 1990. http://dx.doi.org/10.2514/6.1990-267.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Johnson, Ryan F., Gabriel B. Goodwin, Andrew T. Corrigan, Andrew Kercher, and Harsha K. Chelliah. "Discontinuous-Galerkin Simulations of Premixed Ethylene-Air Combustion in a Cavity Combustor." In AIAA Scitech 2019 Forum. American Institute of Aeronautics and Astronautics, 2019. http://dx.doi.org/10.2514/6.2019-1444.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Sperotto de Quadros, Regis, Alvaro de Bortoli, and Rafaela Sehnem. "Carbon monoxide combustion simulations by reduced mechanism." In 24th ABCM International Congress of Mechanical Engineering. ABCM, 2017. http://dx.doi.org/10.26678/abcm.cobem2017.cob17-0618.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Raporty organizacyjne na temat "Combustion Simulations"

1

Whitesides, R. Accelerating Combustion and Surface Chemistry Simulations. Office of Scientific and Technical Information (OSTI), 2025. https://doi.org/10.2172/2530270.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Pope, Stephen B., and Steven R. Lantz. Terascale Cluster for Advanced Turbulent Combustion Simulations. Defense Technical Information Center, 2008. http://dx.doi.org/10.21236/ada486130.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Pitsch, Heinz. Advanced Chemical Modeling for Turbulent Combustion Simulations. Defense Technical Information Center, 2012. http://dx.doi.org/10.21236/ada567579.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Rutland, Christopher J. Terascale High-Fidelity Simulations of Turbulent Combustion with Detailed Chemistry: Spray Simulations. Office of Scientific and Technical Information (OSTI), 2009. http://dx.doi.org/10.2172/951592.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Cloutman, L. D. What is Air? A Standard Model for Combustion Simulations. Office of Scientific and Technical Information (OSTI), 2001. http://dx.doi.org/10.2172/15005296.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Raghurama Reddy, Roberto Gomez, Junwoo Lim, Yang Wang, and Sergiu Sanielevici. Terascale High-Fidelity Simulations of Turbulent Combustion with Detailed Chemistry. Office of Scientific and Technical Information (OSTI), 2004. http://dx.doi.org/10.2172/834581.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Hong G. Im, Arnaud Trouve, Christopher J. Rutland, and Jacqueline H. Chen. Terascale High-Fidelity Simulations of Turbulent Combustion with Detailed Chemistry. Office of Scientific and Technical Information (OSTI), 2009. http://dx.doi.org/10.2172/946730.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Im, Hong G., Arnaud Trouve, Christopher J. Rutland, and Jacqueline H. Chen. Terascale High-Fidelity Simulations of Turbulent Combustion with Detailed Chemistry. Office of Scientific and Technical Information (OSTI), 2012. http://dx.doi.org/10.2172/1048137.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Ma, Kwan-Liu. COLLABORATIVE: IN SITU VISUAL ANALYTICS TECHNOLOGIES FOR EXTREME SCALE COMBUSTION SIMULATIONS. Office of Scientific and Technical Information (OSTI), 2025. https://doi.org/10.2172/2530502.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Vieira, Greg, and Daniel Olsen. PR179-23204-R01 Design and Testing of a Multi-Nozzle PCC on a GMV4 LB NG Engine. Pipeline Research Council International, Inc. (PRCI), 2025. https://doi.org/10.55274/r0000114.

Pełny tekst źródła
Streszczenie:
Methane slip from large-bore, two-stroke, natural gas engines contribute significantly to green-house gas emissions. Optimizing the design and functionality of pre-combustion chambers is one potential solution to reducing these emissions. The objective of the study was to optimize a pre-combustion chamber to improve combustion efficiency and reduce methane emissions from a Cooper Bessemer GMV-4TF. Computational fluid dynamic simulations were used to investigate the effects of varying pre-combustion chamber design parameters, including nozzle angle, flow area, and volume. The most effective des
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!