Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Common fixed points.

Artykuły w czasopismach na temat „Common fixed points”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Common fixed points”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Liu, Zeqing, M. S. Khan, and H. K. Pathak. "On Common Fixed Points." gmj 9, no. 2 (2002): 325–30. http://dx.doi.org/10.1515/gmj.2002.325.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Liu, Zeqing, and Jeong Sheok Ume. "Results on common fixed points." International Journal of Mathematics and Mathematical Sciences 27, no. 12 (2001): 759–64. http://dx.doi.org/10.1155/s0161171201005920.

Pełny tekst źródła
Streszczenie:
We establish common fixed point theorems related with families of self mappings on metric spaces. Our results extend, improve, and unify the results due to Fisher (1977, 1978, 1979, 1981, 1984), Jungck (1988), and Ohta and Nikaido (1994).
Style APA, Harvard, Vancouver, ISO itp.
3

Lewis, Ted, Balder von Hohenbalken, and Victor Klee. "Common supports as fixed points." Geometriae Dedicata 60, no. 3 (1996): 277–81. http://dx.doi.org/10.1007/bf00147364.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Stouti, Abdelkader, and Abdelhakim Maaden. "Fixed points and common fixed points theorems in pseudo-ordered sets." Proyecciones (Antofagasta) 32, no. 4 (2013): 409–18. http://dx.doi.org/10.4067/s0716-09172013000400008.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Espínola, Rafa, Pepa Lorenzo, and Adriana Nicolae. "Fixed points, selections and common fixed points for nonexpansive-type mappings." Journal of Mathematical Analysis and Applications 382, no. 2 (2011): 503–15. http://dx.doi.org/10.1016/j.jmaa.2010.06.039.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Liu, Zeqing, Yuguang Xu, and Yeol Je Cho. "On Characterizations of Fixed and Common Fixed Points." Journal of Mathematical Analysis and Applications 222, no. 2 (1998): 494–504. http://dx.doi.org/10.1006/jmaa.1998.5947.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Bouhadjera, Hakima, Said Beloul, and Achref Tabet. "Common fixed points under strict conditions." Mathematica Moravica 24, no. 2 (2020): 63–70. http://dx.doi.org/10.5937/matmor2002063b.

Pełny tekst źródła
Streszczenie:
In this contribution, three new concepts called reciprocally continuous, strictly subweakly compatible and strictly subreciprocally continuous single and multivalued mappings are given for obtention some common fixed point theorems in a metric space. Our results improve and complement the results of Aliouche and Popa, Azam and Beg, Deshpande and Pathak, Kaneko and Sessa, Popa and others.
Style APA, Harvard, Vancouver, ISO itp.
8

Singh, M. P., and R. Yumnam. "Common Fixed Points of Compatible Mappings." Journal of Scientific Research 4, no. 3 (2012): 603–8. http://dx.doi.org/10.3329/jsr.v4i3.10567.

Pełny tekst źródła
Streszczenie:
In this paper we prove two common fixed point theorems by considering four mappings in complete metric space. In the first theorem we consider two pairs of compatible mappings of type (A) and in the second theorem we consider two pairs of compatible mappings of type (B). Our results modify and extend some earlier results in the literature.© 2012 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved.doi: http://dx.doi.org/10.3329/jsr.v4i3.10567 J. Sci. Res. 4 (3), 603-608 (2012)
Style APA, Harvard, Vancouver, ISO itp.
9

Azam, Akbar, and Ismat Beg. "Common fixed points of fuzzy maps." Mathematical and Computer Modelling 49, no. 7-8 (2009): 1331–36. http://dx.doi.org/10.1016/j.mcm.2008.11.011.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Park, Jong Yeoul, and Jae Ug Jeong. "Common fixed points of fuzzy mappings." Fuzzy Sets and Systems 59, no. 2 (1993): 231–35. http://dx.doi.org/10.1016/0165-0114(93)90203-t.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Latif, Abdul. "Common fixed points versus best approximations." Tamkang Journal of Mathematics 32, no. 3 (2001): 181–86. http://dx.doi.org/10.5556/j.tkjm.32.2001.373.

Pełny tekst źródła
Streszczenie:
We obtain a common fixed point theorem for $ (f,g) $-nonexpansive maps in $ p $-normed spaces. Some results on best approximation are also derived via common fixed points. Our results generalize and extend the work of Al-Thaghafi [J. Approx. Theory 85 (1996), 318-323], Khan and Khan [Approx. Theory & its Appl., 11 (1995), 1-5], Habiniak [J. Approx. Theory, 56 (1989), 241-244], Sahab, Khan and Sessa [J. Approx. Theory, 55 (1988), 349-351], and many of the others.
Style APA, Harvard, Vancouver, ISO itp.
12

Jungck, Gerald. "Compatible mappings and common fixed points." International Journal of Mathematics and Mathematical Sciences 9, no. 4 (1986): 771–79. http://dx.doi.org/10.1155/s0161171286000935.

Pełny tekst źródła
Streszczenie:
A generalization of the commuting mapping concept is introduced. Properties of this “weakened commutativity” are derived and used to obtain results which generalize a theorem by Park and Bae, a theorem by Hadzic, and others.
Style APA, Harvard, Vancouver, ISO itp.
13

Kang, S. M., Y. J. Cho, and G. Jungck. "Common fixed points of compatible mappings." International Journal of Mathematics and Mathematical Sciences 13, no. 1 (1990): 61–66. http://dx.doi.org/10.1155/s0161171290000096.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Pant, R. P. "Common Fixed Points of Noncommuting Mappings." Journal of Mathematical Analysis and Applications 188, no. 2 (1994): 436–40. http://dx.doi.org/10.1006/jmaa.1994.1437.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Al-Thagafi, M. A. "Common Fixed Points and Best Approximation." Journal of Approximation Theory 85, no. 3 (1996): 318–23. http://dx.doi.org/10.1006/jath.1996.0045.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Wu, Hsien-Chung. "Common Coincidence Points and Common Fixed Points in Fuzzy Semi-Metric Spaces." Mathematics 6, no. 2 (2018): 29. http://dx.doi.org/10.3390/math6020029.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Suzuki, Tomonari. "Characterizations of common fixed points of one-parameter nonexpansive semigroups, and convergence theorems to common fixed points." Journal of Mathematical Analysis and Applications 324, no. 2 (2006): 1006–19. http://dx.doi.org/10.1016/j.jmaa.2006.01.004.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Sasvari, Zoltan. "On Common Fixed Points of Linear Contractions." Proceedings of the American Mathematical Society 108, no. 2 (1990): 565. http://dx.doi.org/10.2307/2048311.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Pant, Vyomesh. "Common fixed points for nonexpansive type mappings." Mathematica Moravica 15, no. 1 (2011): 31–39. http://dx.doi.org/10.5937/matmor1101031p.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Chandra, N., Mahesh Joshi, and Narendra Singh. "Common fixed points for faintly compatible mappings." Mathematica Moravica 21, no. 2 (2017): 51–59. http://dx.doi.org/10.5937/matmor1702051c.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Pant, Vyomesh. "COMMON FIXED POINTS UNDER LIPSCHITZ TYPE CONDITION." Bulletin of the Korean Mathematical Society 45, no. 3 (2008): 467–75. http://dx.doi.org/10.4134/bkms.2008.45.3.467.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Kuczumow, T., and A. Stachura. "Common fixed points of commuting holomorphic mappings." Kodai Mathematical Journal 12, no. 3 (1989): 423–28. http://dx.doi.org/10.2996/kmj/1138039106.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Khan, A. R., and F. Akbar. "COMMON FIXED POINTS FROM BEST SIMULTANEOUS APPROXIMATIONS." Taiwanese Journal of Mathematics 13, no. 5 (2009): 1379–86. http://dx.doi.org/10.11650/twjm/1500405546.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Sasv{ári, Zolt{án. "On common fixed points of linear contractions." Proceedings of the American Mathematical Society 108, no. 2 (1990): 565. http://dx.doi.org/10.1090/s0002-9939-1990-0998740-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

B. Patel, Atulkumar, Prof P. J. Bhatt, and Shailesh T.Patel. "Common Fixed Points in Fuzzy Metric Spaces." International Journal of Mathematical Trends and Technology 5, no. 2 (2014): 82–87. http://dx.doi.org/10.14445/22315373/ijmtt-v5p516.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Singh, M. R., L. S. Singh, and P. P. Murthy. "Common fixed points of set-valued mappings." International Journal of Mathematics and Mathematical Sciences 25, no. 6 (2001): 411–15. http://dx.doi.org/10.1155/s0161171201001818.

Pełny tekst źródła
Streszczenie:
The main purpose of this paper is to obtain a common fixed point for a pair of set-valued mappings of Greguš type condition. Our theorem extend Diviccaro et al. (1987), Guay et al. (1982), and Negoescu (1989).
Style APA, Harvard, Vancouver, ISO itp.
27

Vetro, Pasquale. "Common fixed points in cone metric spaces." Rendiconti del Circolo Matematico di Palermo 56, no. 3 (2007): 464–68. http://dx.doi.org/10.1007/bf03032097.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Kamran, Tayyab. "Common fixed points theorems for fuzzy mappings." Chaos, Solitons & Fractals 38, no. 5 (2008): 1378–82. http://dx.doi.org/10.1016/j.chaos.2008.04.031.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Chugh, Renu, and Sanjay Kumar. "Common fixed points for weakly compatible maps." Proceedings Mathematical Sciences 111, no. 2 (2001): 241–47. http://dx.doi.org/10.1007/bf02829594.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Pant, R. P., and Ravindra K. Bisht. "Common fixed points of pseudo compatible mappings." Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas 108, no. 2 (2013): 475–81. http://dx.doi.org/10.1007/s13398-013-0119-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Abate, Marco. "Common fixed points of commuting holomorphic maps." Mathematische Annalen 283, no. 4 (1989): 645–55. http://dx.doi.org/10.1007/bf01442858.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

A. Linero. "Common Fixed Points for Commuting Cournot Maps." Real Analysis Exchange 28, no. 1 (2003): 121. http://dx.doi.org/10.14321/realanalexch.28.1.0121.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Jungck, Gerald. "Compatible mappings and common fixed points(2)." International Journal of Mathematics and Mathematical Sciences 11, no. 2 (1988): 285–88. http://dx.doi.org/10.1155/s0161171288000341.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Jungck, Gerald. "Compatible mappings and common fixed points “revisited”." International Journal of Mathematics and Mathematical Sciences 17, no. 1 (1994): 37–40. http://dx.doi.org/10.1155/s0161171294000062.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Bisht, Ravindra K., and Narendra K. Singh. "On asymptotic regularity and common fixed points." Journal of Analysis 28, no. 3 (2019): 847–52. http://dx.doi.org/10.1007/s41478-019-00213-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Bari, Cristina Di, and Pasquale Vetro. "Common fixed points in generalized metric spaces." Applied Mathematics and Computation 218, no. 13 (2012): 7322–25. http://dx.doi.org/10.1016/j.amc.2012.01.010.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Pant, R. P., and V. Pant. "Common Fixed Points under Strict Contractive Conditions." Journal of Mathematical Analysis and Applications 248, no. 1 (2000): 327–32. http://dx.doi.org/10.1006/jmaa.2000.6871.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Alzumi, Hadeel Z., Hakima Bouhadjera, and Mohammed S. Abdo. "Unique Common Fixed Points for Expansive Maps." International Journal of Mathematics and Mathematical Sciences 2023 (September 11, 2023): 1–14. http://dx.doi.org/10.1155/2023/6689743.

Pełny tekst źródła
Streszczenie:
In this work, we establish three common fixed point results for expansive maps satisfying implicit relations in metric and dislocated metric spaces. We do this by utilizing recently developed concept of occasionally weakly biased maps of type A . These studies about the theory of common fixed points refine several earlier ones. Some illustrative examples are offered to support our theorems, and even better, a pertinent application is supplied to demonstrate the viability and applicability of one of these results.
Style APA, Harvard, Vancouver, ISO itp.
39

Alikhani-Koopaei, Aliasghar. "On common fixed points, periodic points, and recurrent points of continuous functions." International Journal of Mathematics and Mathematical Sciences 2003, no. 39 (2003): 2465–73. http://dx.doi.org/10.1155/s0161171203205366.

Pełny tekst źródła
Streszczenie:
It is known that two commuting continuous functions on an interval need not have a common fixed point. However, it is not known if such two functions have a common periodic point. we had conjectured that two commuting continuous functions on an interval will typically have disjoint sets of periodic points. In this paper, we first prove thatSis a nowhere dense subset of[0,1]if and only if{f∈C([0,1]):Fm(f)∩S¯≠∅}is a nowhere dense subset ofC([0,1]). We also give some results about the common fixed, periodic, and recurrent points of functions. We consider the class of functionsfwith continuousωfst
Style APA, Harvard, Vancouver, ISO itp.
40

Pant, R. P., K. Jha, and S. Padaliya. "On common fixed points by altering distances between the points." Tamkang Journal of Mathematics 34, no. 3 (2003): 239–43. http://dx.doi.org/10.5556/j.tkjm.34.2003.315.

Pełny tekst źródła
Streszczenie:
The aim of the present paper is to obtain an answer to an open problem due to Sastry et al. [5] by using the relationship between the continuity and reciprocal continuity of mappings in the setting of control functions which alter distances.
Style APA, Harvard, Vancouver, ISO itp.
41

S., Gomathi*1 &. V. Sankar Raj2. "COMMON FIXED POINTS OF RELATIVELY NONEXPANSIVE MAPPINGS BY ITERATION." GLOBAL JOURNAL OF ENGINEERING SCIENCE AND RESEARCHES 5, no. 12 (2018): 216–18. https://doi.org/10.5281/zenodo.2526362.

Pełny tekst źródła
Streszczenie:
Let us consider two nonempty closed convex subsets A, B of a strictly convex space and f<sub>i</sub> : A &cup; B &rarr; A &cup; B, i = 1, 2, . . . k be a reltively nonexpansive mappings. ie. f<sub>i</sub>(A) &sube; A and f<sub>i</sub>(B) &sube; B and ||f<sub>i</sub>x &minus; f<sub>i</sub>y|| &le; ||x &ndash; y||, for all x &isin; A and y &isin; B. In this paper, we provide the strong convergence of some iteration of the mappings {f<sub>i</sub>}<sup>k</sup><sub>1</sub> to a common fixed point of {f<sub>i</sub>}<sup>k</sup><sub>1</sub> in strictly convex space setting, which generalizes a result
Style APA, Harvard, Vancouver, ISO itp.
42

Bernik *, J., R. Drnovšek, T. Košir ‡, et al. "Common fixed points and common eigenvectors for sets of matrices." Linear and Multilinear Algebra 53, no. 2 (2005): 137–46. http://dx.doi.org/10.1080/03081080410001714714.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

BOUHADJERA, Hakima. "Unique common fixed points through a unified condition." Acta et Commentationes Universitatis Tartuensis de Mathematica 26, no. 2 (2022): 243–52. http://dx.doi.org/10.12697/acutm.2022.26.17.

Pełny tekst źródła
Streszczenie:
Fixed point theory is a crucial branch in mathematics with a colossal number of applications in countless subjects. It furnishes preeminent tools and resources for elucidating varied problems which at first glance do not look like a fixed point problem. Since and even before 1912 till now several authors launched the existence and uniqueness of common fixed points for pairs of single and set-valued maps satisfying certain compatibilities on different spaces. This paper proves existence and uniqueness of a common fixed point for pairs of occasionally weakly biased maps. This unique common fixed
Style APA, Harvard, Vancouver, ISO itp.
44

PACURAR, MADALINA. "Common fixed points for almost Presic type operators." Carpathian Journal of Mathematics 28, no. 1 (2012): 117–26. http://dx.doi.org/10.37193/cjm.2012.01.07.

Pełny tekst źródła
Streszczenie:
The existence of coincidence points and common fixed points for almost Presic operators in a metric space setting is proved. A multi-step iterative method for constructing the common fixed points is also provided.
Style APA, Harvard, Vancouver, ISO itp.
45

Mani, G., S. S. Ramulu, S. Aljohani, Z. D. Mitrovic, and N. Mlaiki. "Results on fixed points and common fixed points on bipolar b -metric space with applications." Journal of Mathematics and Computer Science 37, no. 03 (2024): 274–86. http://dx.doi.org/10.22436/jmcs.037.03.02.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Olaoluwa, Hallowed, and Johnson Olaleru. "On common fixed points and multipled fixed points of contractive mappings in metric-type spaces." Journal of the Nigerian Mathematical Society 34, no. 3 (2015): 249–58. http://dx.doi.org/10.1016/j.jnnms.2015.06.001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Sagheer, Dur-e.-Shehwar, Zainab Rahman, Samina Batul, Ahmad Aloqaily, and Nabil Mlaiki. "Existence of Fuzzy Fixed Points and Common Fuzzy Fixed Points for FG-Contractions with Applications." Mathematics 11, no. 18 (2023): 3981. http://dx.doi.org/10.3390/math11183981.

Pełny tekst źródła
Streszczenie:
This article contains results of the existence of fuzzy fixed points of fuzzy mappings that satisfy certain contraction conditions using the platform of partial b-metric spaces. Some non-trivial examples are provided to authenticate the main results. The constructed results in this work will likely stimulate new research directions in fuzzy fixed-point theory and related hybrid models. Eventually, some fixed-point results on multivalued mappings are established. These theorems provide an excellent application of main theorems on fuzzy mappings. The results of this article are extensions of man
Style APA, Harvard, Vancouver, ISO itp.
48

Dacić, Rade M. "Common fixed points and fixed edges for monotone mappings in posets." Colloquium Mathematicum 58, no. 2 (1990): 167–74. http://dx.doi.org/10.4064/cm-58-2-167-174.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Kaewcharoen, Anchalee. "Fixed point theorems related to some constants and common fixed points." Nonlinear Analysis: Hybrid Systems 4, no. 3 (2010): 389–94. http://dx.doi.org/10.1016/j.nahs.2009.10.001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Singh, Sukh, Manoj Ughade, R. Daheriya, Rashmi Jain, and Suraj Shrivastava. "Coincidence Points & Common Fixed Points for Multiplicative Expansive Type Mappings." British Journal of Mathematics & Computer Science 19, no. 3 (2016): 1–14. http://dx.doi.org/10.9734/bjmcs/2016/28927.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!