Gotowa bibliografia na temat „Complex Social Networks”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Complex Social Networks”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Rozprawy doktorskie na temat "Complex Social Networks"

1

Marchese, Emiliano. "Optimizing complex networks models." Thesis, IMT Alti Studi Lucca, 2022. http://e-theses.imtlucca.it/356/1/Marchese_phdthesis.pdf.

Pełny tekst źródła
Streszczenie:
Analyzing real-world networks ultimately amounts at com- paring their empirical properties with the outcome of a proper, statistical model. The far most common, and most useful, approach to define benchmarks rests upon the so-called canonical formalism of statistical mechanics which has led to the definition of the broad class of models known as Exponential Random Graphs (ERGs). Generally speaking, employing a model of this family boils down at maximizing a likelihood function that embodies the available information about a certain system, hence constituting the desired benchmark. Although powerful, the aforementioned models cannot be solved analytically, whence the need to rest upon numerical recipes for their optimization. Generally speaking, this is a hard task, since real-world networks can be enormous in size (for example, consisting of billions of nodes and links), hence requiring models with ‘many’ parameters (say, of the same order of magnitude of the number of nodes). This evidence calls for optimization algorithms which are both fast and scalable: the collection of works constituting the present thesis represents an attempt to fill this gap. Chapter 1 provides a quick introduction to the topic. Chapter 2 deals specifically with ERGs: after reviewing the basic concepts constituting the pillars upon which such a framework is based, we will discuss several instances of it and three different numerical techniques for their optimization. Chapter 3, instead, focuses on the detection of mesoscale structures and, in particular, on the formalism based upon surprise: as the latter allows any partition of nodes to be assigned a p-value, detecting a specific, mesoscale structural organization can be understood as the problem of finding the corresponding, most significant partition - i.e. an optimization problem whose score function is, precisely, surprise. Finally, chapter 4 deals with the application of a couple of ERGs and of the surprise-based formalism to cryptocurrencies (specifically, Bitcoin).
Style APA, Harvard, Vancouver, ISO itp.
2

Unicomb, Samuel Lee. "Threshold driven contagion on complex networks." Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEN003.

Pełny tekst źródła
Streszczenie:
Les interactions entre les composants des systèmes complexes font émerger différents types de réseaux. Ces réseaux peuvent jouer le rôle d’un substrat pour des processus dynamiques tels que la diffusion d’informations ou de maladies dans des populations. Les structures de ces réseaux déterminent l’évolution d’un processus dynamique, en particulier son régime transitoire, mais aussi les caractéristiques du régime permanent. Les systèmes complexes réels manifestent des interactions hétérogènes en type et en intensité. Ces systèmes sont représentés comme des réseaux pondérés à plusieurs couches. Dans cette thèse, nous développons une équation maîtresse afin d’intégrer ces hétérogénéités et d’étudier leurs effets sur les processus de diffusion. À l’aide de simulations mettant en jeu des réseaux réels et générés, nous montrons que les dynamiques de diffusion sont liées de manière non triviale à l’hétérogénéité de ces réseaux, en particulier la vitesse de propagation d’une contagion basée sur un effet de seuil. De plus, nous montrons que certaines classes de réseaux sont soumises à des transitions de phase réentrantes fonctions de la taille des “global cascades”. La tendance des réseaux réels à évoluer dans le temps rend difficile la modélisation des processus de diffusion. Nous montrons enfin que la durée de diffusion d’un processus de contagion basé sur un effet de seuil change de manière non-monotone du fait de la présence de “rafales” dans les motifs d’interactions. L’ensemble de ces résultats mettent en lumière les effets de l’hétérogénéité des réseaux vis-à-vis des processus dynamiques y évoluant<br>Networks arise frequently in the study of complex systems, since interactions among the components of such systems are critical. Net- works can act as a substrate for dynamical process, such as the diffusion of information or disease throughout populations. Network structure can determine the temporal evolution of a dynamical process, including the characteristics of the steady state. The simplest representation of a complex system is an undirected, unweighted, single layer graph. In contrast, real systems exhibit heterogeneity of interaction strength and type. Such systems are frequently represented as weighted multiplex networks, and in this work we in- corporate these heterogeneities into a master equation formalism in order to study their effects on spreading processes. We also carry out simulations on synthetic and empirical networks, and show that spread- ing dynamics, in particular the speed at which contagion spreads via threshold mechanisms, depend non-trivially on these heterogeneities. Further, we show that an important family of networks undergo reentrant phase transitions in the size and frequency of global cascades as a result of these interactions. A challenging feature of real systems is their tendency to evolve over time, since the changing structure of the underlying network is critical to the behaviour of overlying dynamical processes. We show that one aspect of temporality, the observed “burstiness” in interaction patterns, leads to non-monotic changes in the spreading time of threshold driven contagion processes. The above results shed light on the effects of various network heterogeneities, with respect to dynamical processes that evolve on these networks
Style APA, Harvard, Vancouver, ISO itp.
3

Roth, Camille. "Co-evolution in epistemic networks : reconstructing social complex systems." Palaiseau, Ecole polytechnique, 2005. http://www.theses.fr/2005EPXX0057.

Pełny tekst źródła
Streszczenie:
Des agents produisant, manipulant et échangeant des connaissances constituent un système complexe socio-sémantique, dont l’étude représente un défi à la fois théorique, dans la perspective d’étendre la naturalisation des sciences sociales, et pratique, avec des applications permettant aux agents de connaître la dynamique du système dans lequel ils évoluent. Cette thèse se situe dans le cadre de ce programme de recherche. Parallèlement et plus largement, nous nous intéressons à la question de la reconstruction en sciences sociales. La reconstruction est un problème inverse comprenant deux volets complémentaires : (i) la déduction d’observations de haut-niveau à partir de phénomènes de bas-niveau ; et (ii) la reproduction de l’évolution des observations de haut-niveau à partir de la dynamique des objets de bas-niveau. Nous affirmons que plusieurs aspects significatifs de la structure d’une communauté de savoirs sont principalement produits par la dynamique d’un réseau épistémique où co-évoluent agents et concepts. En particulier, nous résolvons le premier volet du problème de la reconstruction en utilisant des treillis de Galois afin de recréer des taxonomies de communautés de savoirs à partir de simples relations entre agents et concepts; nous obtenons de fait une description historique se rapportant à la progression des champs, leur déclin, leur spécialisation ou leurs interactions (fusion ou scission). Nous micro-fondons ensuite la structure de ces communautés de savoirs en exhibant et en estimant empiriquement des processus d’interaction au niveau des agents, en co-évolution avec les concepts au sein du réseau épistémique, qui rendent compte de la morphogenèse et de l’émergence de plusieurs faits stylisés structurels de haut-niveau—il s’agit là du deuxième volet. Nous défendons finalement un point de vue épistémologique concernant la méthodologique générale de reconstruction d’un système complexe qui appuie notre choix d’un cadre coévolutionnaire<br>Agents producing and exchanging knowledge are forming as a whole a socio-semantic complex system. Studying such knowledge communities offers theoretical challenges, with the perspective of naturalizing further social sciences, as well as practical challenges, with potential applications enabling agents to know the dynamics of the system they are participating in. The present thesis lies within the framework of this research program. Alongside and more broadly, we address the question of reconstruction in social science. Reconstruction is a reverse problem consisting of two issues: (i) deduce a given high-level observation for a considered system from low-level phenomena; and (ii) reconstruct the evolution of high-level observations from the dynamics of lower-level objects. In this respect, we argue that several significant aspects of the structure of a knowledge community are primarily produced by the co-evolution between agents and concepts, i. E. The evolution of an epistemic network. In particular, we address the first reconstruction issue by using Galois lattices to rebuild taxonomies of knowledge communities from low-level observation of relationships between agents and concepts; achieving ultimately an historical description (inter alia field progress, decline, specialization, interaction - merging or splitting). We then micro-found various stylized facts regarding this particular structure, by exhibiting processes at the level of agents accounting for the emergence of epistemic community structure. After assessing the empirical interaction and growth processes, and assuming that agents and concepts are co-evolving, we successfully propose a morphogenesis model rebuilding relevant high-level stylized facts. We finally defend a general epistemological point related to the methodology of complex system reconstruction, eventually supporting our choice of a co-evolutionary framework
Style APA, Harvard, Vancouver, ISO itp.
4

Savoy, Daniel Prata. "A dinâmica de opinião dos debates públicos em redes sociais complexas." Universidade de São Paulo, 2012. http://www.teses.usp.br/teses/disponiveis/100/100132/tde-04022013-114700/.

Pełny tekst źródła
Streszczenie:
Neste trabalho são estudados os efeitos, causados por variações na topologia de rede, no comportamento de quatro modelos de dinâmica de opinião: o Modelo Votante, o Modelo Confiança Limitada, o Modelo da Regra da Maioria e o Modelo CODA. Primeiramente estes modelos são utilizados em simulações que usam uma série de diversas redes sociais complexas, geradas para apresentar diferentes combinações de valores de certas propriedades chave, como aglomeração, conectividade, assortatividade e distâncias internas. Em seguida, são realizados experimentos que mostram como a topologia influencia os resultados na modelagem de cenários de debates públicos, onde duas opiniões rivais, A e B, disputam sob condições desiguais o consenso de uma população simulada.<br>This work studies the effects caused by variations in network topology in the behavior of four different models of opinion dynamics: the Voter Model, Bounded Confidence Model, the Majority Rule Model and the CODA Model. First, these models are used in simulations over a number of different complex social networks, generated to show sereval combinations of key properties such as clustering, connectivity, assortativity and path distances. Then, we perform experiments that show how the topology influences the results in modeling scenarios of public debates, where two rival opinions, A and B, compete under unequal conditions for the consensus of a simulated population.
Style APA, Harvard, Vancouver, ISO itp.
5

Ciotti, Valerio. "Positive and negative connections and homophily in complex networks." Thesis, Queen Mary, University of London, 2018. http://qmro.qmul.ac.uk/xmlui/handle/123456789/31787.

Pełny tekst źródła
Streszczenie:
In this thesis I investigate the effects of positive and negative connections on social and organization networks, and the presence and role of homophily in networks of scientific collaborations and citations through the combination of methodologies borrowed from complexity science, statistics, and organizational sciences. In the first part of the thesis, I study the differences between patterns of positive and negative connections among individuals in two online signed social networks. Findings suggest that the sign of links in a social network shapes differently the network's topology: there is a positive correlation between the degrees of two nodes, when they share a positive connection, and a negative correlation when they share a negative connection. I then move my focus to the study of a dataset on start-ups from which I construct and analyse the competition and mobility networks among companies. Results show that the presence of competition has negative effects on the mobility of people among companies and on the success of the start-up ecosystem of a nation. Competitive behaviours may also emerge in science. Therefore, in the second part of this thesis, I focus on a database of all papers and authors who have published in the American Physical Society (APS) journals. Through the analysis of the citation network of the APS, I propose a method that aims to statistically validate the presence (or absence) of a citation between any two articles. Results show that homophily is an important mechanism behind the citation between articles: the more two articles share similar bibliographies, i.e., deal with similar arguments, the more likely there is a citation between them. In the last chapter, I investigate the presence of homophily in the APS data set, this time at the level of the collaboration network among sci- entists. Results show that homophily can be responsible in fostering collaboration, but above a given point the effect of similarity decreases the probability of a collaboration. Additionally, I propose a model that successfully reproduces the empirical findings.
Style APA, Harvard, Vancouver, ISO itp.
6

Abreu, Luís Fernando Dorelli de. "Estrutura e dinâmica de redes de informação." Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-08112016-091004/.

Pełny tekst źródła
Streszczenie:
O aumento na disponibilidade de dados referentes a interação entre pessoas online tornou possível o estudo o processo de propagação de informações em redes sociais com volumes de dado antes jamais pensados. Neste trabalho, utilizamos dados do site de micro-blogging Twitter juntamente com conceitos de redes complexas para entender, caracterizar e classificar processos de difusão de informação observados nessa plataforma e em redes sociais em geral. Apresentamos importantes medidas para caracterização de cascatas de informação, bem como algoritmos eficientes para o seu cálculo. Com o auxilio dessas, mostramos que é possível quantificar a influência da rede social no processo de propagação de informação. Em seguida, constatamos que a informação tende a propagar por caminhos mínimos nessa rede. Por fim, mostramos que é possível utilizar apenas a topologia da rede social, sem nenhuma informação semântica, para agrupar tópicos, e que a topologia da rede social é fortemente influenciada pelos assuntos falados nela. Apesar de nosso trabalho possuir como base um único dataset, os métodos e medidas desenvolvidos são gerais e podem ser aplicados a qualquer processo de difusão de informação e a qualquer rede complexa.<br>The raise in the availability of data regarding interactions between people online has opened new doors to study the process of information diffusion in social networks. In this present work, we make use of the data from the micro-blogging website Twitteralong with complex networks concepts to understand, characterize and classify information diffusion processes observed in this platform and in social networks in general. We present important measures to characterize information cascades and efficient algorithms to calculate them. With the help of these measures, we show that it is possible to quantify the influence of the social network in the process of information diffusion. After that, we show that information does tend to travel along shortest paths on Twitter. Finally, we show that the topology of the social network, without any extra semantic information, can be used to aggregate topics, and that such topology is highly influenced by the topics being discussed on it. Altough we work with only a single dataset, our methods and measures developed are general and can be applied to any process of information diffusion and any complex network.
Style APA, Harvard, Vancouver, ISO itp.
7

Libardi, Paula Luciene Oliveira 1980. "Detecção computacional de falecidos em redes sociais online." [s.n.], 2015. http://repositorio.unicamp.br/jspui/handle/REPOSIP/267725.

Pełny tekst źródła
Streszczenie:
Orientadores: André Franceschi de Angelis, Regina Lúcia de Oliveira Moraes<br>Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Tecnologia<br>Made available in DSpace on 2018-08-27T04:53:50Z (GMT). No. of bitstreams: 1 Libardi_PaulaLucieneOliveira_M.pdf: 1610224 bytes, checksum: a08b75cd1a30c421927617ee8b6ac8d4 (MD5) Previous issue date: 2015<br>Resumo: A identificação de usuários falecidos em Redes Sociais Online é um desafio em aberto e, dado o tamanho das principais redes, abordagens que envolvam intervenção manual são impraticáveis. Usuários inativos por longo tempo inviabilizam soluções simples tais como a expiração de um prazo desde o último acesso, o que torna difícil a diferenciação entre inativos e falecidos. Esta pesquisa iniciou-se com o pressuposto de que o problema poderia ser parcialmente resolvido com métodos automáticos e a hipótese era de que dois métodos aqui propostos, um baseado na análise de frequência de mensagens trocadas entre usuários e outro fundamentado na combinação de informações da topologia da rede junto a inspeções de mensagens, poderiam identificar satisfatoriamente parte dos usuários falecidos. Para testar esta hipótese, recorreu-se à simulação computacional, usando topologias livre de escala e aleatória. O programa que simula as redes foi construído de forma a aplicar e testar os métodos de identificação de falecidos, seguindo padrões de projeto que permitem facilmente a troca ou o encadeamento dos algoritmos a validar. Dessa característica, originou-se um terceiro método, que é a combinação das saídas de algoritmos detectores aplicados anteriormente à rede. Os resultados da pesquisa validaram a hipótese, sendo que os dois métodos propostos inicialmente tiveram, cada qual, índices de acerto superiores a 70% na maioria dos casos simulados, independentemente da topologia da rede. Em ambos os métodos, no entanto, é necessária uma calibração de dois parâmetros operacionais, o que exige algum conhecimento da rede examinada e influencia na taxa de detecção. O último método mostrou-se bastante eficiente, com detecção correta superior a 94%, e capaz de absorver flutuações na taxa de detecção dos demais métodos advindas de suas respectivas parametrizações. Portanto, os objetivos da pesquisa foram plenamente atingidos, com a validação da hipótese inicial, a proposta de três métodos para a solução do problema e a geração de um produto tecnológico, o Demortuos, que é o software de simulação da rede e teste dos métodos, atualmente em processo de registro no Instituto Nacional da Propriedade Industrial (INPI). Adicionalmente, foram abertas possibilidades para o desenvolvimento de métodos automáticos para busca de outras classes de usuários<br>Abstract: Identifying deceased users in Online Social Networks is an open challenge and, given the size of the main networks, approaches involving manual intervention are impractical. Inactive users for a long time prevent simple solutions such as the expiration of a period since the last entry, making it difficult to differentiate between inactive and deceased users. This research began with the assumption that the problem could be partially solved with automated methods and the hypothesis was that two methods proposed here, one based on frequency analysis of messages exchanged between users and the other based on the combination of topology information network with the messages of inspections, could satisfactorily identify the part of deceased users. To test this hypothesis, we used the computer simulation, using free topologies of scale and random, the latter for comparison purposes. The program that simulates the network was constructed to implement and test the deceased identification methods, following design patterns that easily allow the exchange or the chain of algorithms to validate. This characteristic gave up a third method, which is combining the outputs of detectors algorithms previously applied to the network. The survey results validated the hypothesis, and the two proposed methods initially had, each, hit rates of over 70% in most cases simulated, regardless of the network topology. In both methods, however, two operating parameters calibration is necessary, which requires some knowledge of the network and examined influences the detection rate. The last method proved to be very efficient with proper detection above 94%, and able to absorb fluctuations in the detection rate of other methods resulting from their respective parameterization. Therefore, the research objectives were fully achieved, with the validation of the initial hypothesis, the proposed three methods for the solution of the problem and the generation of a technological product, Demortuos, which is the network simulation software and testing methods currently in the registration process at the National Institute of Industrial Property (INPI). Moreover, possibilities are opened for the development of automated methods to search for other classes of users<br>Mestrado<br>Tecnologia e Inovação<br>Mestra em Tecnologia
Style APA, Harvard, Vancouver, ISO itp.
8

Grabowicz, Przemyslaw Adam. "Complex networks approach to modeling online social systems. The emergence of computational social science." Doctoral thesis, Universitat de les Illes Balears, 2014. http://hdl.handle.net/10803/131220.

Pełny tekst źródła
Streszczenie:
This thesis is devoted to quantitative description, analysis, and modeling of complex social systems in the form of online social networks. Statistical patterns of the systems under study are unveiled and interpreted using concepts and methods of network science, social network analysis, and data mining. A long-term promise of this research is that predicting the behavior of complex techno-social systems will be possible in a way similar to contemporary weather forecasting, using statistical inference and computational modeling based on the advancements in understanding and knowledge of techno-social systems. Although the subject of this study are humans, as opposed to atoms or molecules in statistical physics, the availability of extremely large datasets on human behavior permits the use of tools and techniques of statistical physics. This dissertation deals with large datasets from online social networks, measures statistical patterns of social behavior, and develops quantitative methods, models, and metrics for complex techno-social systems.<br>La presente tesis está dedicada a la descripción, análisis y modelado cuantitativo de sistemas complejos sociales en forma de redes sociales en internet. Mediante el uso de métodos y conceptos provenientes de ciencia de redes, análisis de redes sociales y minería de datos se descubren diferentes patrones estadísticos de los sistemas estudiados. Uno de los objetivos a largo plazo de esta línea de investigación consiste en hacer posible la predicción del comportamiento de sistemas complejos tecnológico-sociales, de un modo similar a la predicción meteorológica, usando inferencia estadística y modelado computacional basado en avances en el conocimiento de los sistemas tecnológico-sociales. A pesar de que el objeto del presente estudio son seres humanos, en lugar de los átomos o moléculas estudiados tradicionalmente en la física estadística, la disponibilidad de grandes bases de datos sobre comportamiento humano hace posible el uso de técnicas y métodos de física estadística. En el presente trabajo se utilizan grandes bases de datos provenientes de redes sociales en internet, se miden patrones estadísticos de comportamiento social, y se desarrollan métodos cuantitativos, modelos y métricas para el estudio de sistemas complejos tecnológico-sociales.
Style APA, Harvard, Vancouver, ISO itp.
9

Grando, Felipe. "On the analysis of centrality measures for complex and social networks." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2015. http://hdl.handle.net/10183/122516.

Pełny tekst źródła
Streszczenie:
Recentemente, as medidas de centralidade ganharam relevância nas pesquisas com redes complexas e redes sociais, atuando como preditores comportamentais, na identificação de elementos de poder e influência, na detecção de pontos estratégicos para a comunicação e para a transmissão de doenças. Novas métricas foram criadas e outras reformuladas, mas pouco tem sido feito para que se entenda a relação existente entre as diferentes medidas de centralidades, assim como sua relação com outras propriedades estruturais das redes em que elas são frequentemente aplicadas. Nossa pesquisa visa analisar e estudar essas relações para que sirvam de guia na aplicação das medidas de centralidade existentes em novos contextos e aplicações. Nós apresentamos também evidencias que indicam um desempenho superior das medidas conhecidas como Walk Betweenness, Information, Eigenvector and Betweenness na distinção de vértices das redes somente pelas suas características estruturais. Ainda, nós propiciamos detalhes sobre o desempenho distinto de cada métrica de acordo com o tipo de rede em que se trabalha. Adicionalmente, mostramos que várias das medidas de centralidade apresentam um alto nível de redundância e concordância entre si (com correlação superior a 0,8). Um forte indício que o uso simultâneo de várias métricas é improdutivo ou pouco eficaz. Os resultados da nossa pesquisa reforçam a ideia de que para usar apropriadamente as medidades de centralidade é de extrema importância que se saiba mais sobre o comportamento e propriedades das mesmas, fato que salientamos nessa dissertação.<br>Over the last years, centrality measures have gained importance within complex and social networks research, e.g., as predictors of behavior, identification of powerful and influential elements, detection of critical spots in communication networks and in transmission of diseases. New measures have been created and old ones reinvented, but few have been proposed to understand the relation among measures as well as between measures and other structural properties of the networks. Our research analyzes and studies these relations with the objective of providing a guide to the application of existing centrality measures for new environments and new purposes. We shall also present evidence that the measures known as Walk Betweenness, Information, Eigenvector and Betweenness are substantially better than other metrics in distinguishing vertices in a network by their structural properties. Furthermore, we provide evidence that each metric performs better with respect to distinct kinds of networks. In addition, we show that most metrics present a high level of redundancy (over 0.8 correlation) and its simultaneous use, in most cases, is fruitless. The results achieved in our research reinforce the idea that to use centrality measures properly, knowledge about their underlying properties and behavior is valuable, as we show in this dissertation.
Style APA, Harvard, Vancouver, ISO itp.
10

Amiri, Babak. "Evolutionary Algorithms for Community Detection in Complex Networks." Thesis, The University of Sydney, 2013. http://hdl.handle.net/2123/10451.

Pełny tekst źródła
Streszczenie:
In recent years there has been a surge of community detection study of complex network analysis, since communities often play important roles in network systems. Most contemporary community detection algorithms employ single optimization criteria (i.e., modularity), which may not be adequate to represent the structures in complex networks. We suggest a community detection process as a Multi-Objective Optimization Problem (MOP) for investigating the community structures in complex networks. To overcome the limitations of community detection problems, we propose new multi-objective optimization algorithms: a Modified Harmony Search Algorithm, a Hybrid Chaotic Local Search-Harmony Search Algorithm (CLS-HAS) and an Enhanced Firefly Algorithm (EFF). A new tuning parameter based on a chaotic mechanism and novel self-adaptive probabilistic mutation strategies is used to improve the overall performance of the EFF algorithm. Although much of the focus of community detection techniques has been on identifying disjoint and static communities, almost all real networks are dynamic in nature. Detecting communities in dynamic networks is very challenging and the analysis of dynamic communities is still considered to be in its infancy. To study the structure of communities in dynamic networks, we consider an evolution-based clustering method with the aim of maximizing cluster accuracy and minimizing clustering drift from one time step to the next. In this study, the detection of communities with temporal smoothness is formulated as a multi-objective problem and the Modified Bee Swarm Optimization (MBSO) is proposed to solve the community detection problem. The MBSO algorithm uses three kinds of bees, which have different moving pattern, to explore the entire search space and prevent premature convergence. The proposed algorithm has several remarkable characteristics to enhance the search capability of the original bee swarm optimization (BSO) for finding Pareto optimal solutions. Many real networks have complex overlapping community structures. This research also proposes a novel Fungi Optimization Algorithm (FOA) to discover overlapping communities. Unlike conventional algorithms based on node clustering, the proposed algorithm is based on link clustering.
Style APA, Harvard, Vancouver, ISO itp.
Więcej źródeł
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!