Artykuły w czasopismach na temat „Complexe SWItch/Sucrose Non-Fermentable”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Complexe SWItch/Sucrose Non-Fermentable”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Choi, Sung Kyung, Myoung Jun Kim, and Jueng Soo You. "SMARCB1 Acts as a Quiescent Gatekeeper for Cell Cycle and Immune Response in Human Cells." International Journal of Molecular Sciences 21, no. 11 (2020): 3969. http://dx.doi.org/10.3390/ijms21113969.
Pełny tekst źródłaNguyen, Thinh T., Joanne G. A. Savory, Travis Brooke-Bisschop, et al. "Cdx2 Regulates Gene Expression through Recruitment of Brg1-associated Switch-Sucrose Non-fermentable (SWI-SNF) Chromatin Remodeling Activity." Journal of Biological Chemistry 292, no. 8 (2017): 3389–99. http://dx.doi.org/10.1074/jbc.m116.752774.
Pełny tekst źródłaLiu, Hongyu, Yang Zhao, Guizhen Zhao, Yongjie Deng, Y. Eugene Chen, and Jifeng Zhang. "SWI/SNF Complex in Vascular Smooth Muscle Cells and Its Implications in Cardiovascular Pathologies." Cells 13, no. 2 (2024): 168. http://dx.doi.org/10.3390/cells13020168.
Pełny tekst źródłaRembiałkowska, Nina, Katarzyna Rekiel, Piotr Urbanowicz, et al. "Epigenetic Dysregulation in Cancer: Implications for Gene Expression and DNA Repair-Associated Pathways." International Journal of Molecular Sciences 26, no. 13 (2025): 6531. https://doi.org/10.3390/ijms26136531.
Pełny tekst źródłaDel Savio, Elisa, and Roberta Maestro. "Beyond SMARCB1 Loss: Recent Insights into the Pathobiology of Epithelioid Sarcoma." Cells 11, no. 17 (2022): 2626. http://dx.doi.org/10.3390/cells11172626.
Pełny tekst źródłaWanior, Marek, Andreas Krämer, Stefan Knapp, and Andreas C. Joerger. "Exploiting vulnerabilities of SWI/SNF chromatin remodelling complexes for cancer therapy." Oncogene 40, no. 21 (2021): 3637–54. http://dx.doi.org/10.1038/s41388-021-01781-x.
Pełny tekst źródłaSoto-Castillo, Juan José, Lucía Llavata-Marti, Roser Fort-Culillas, et al. "SWI/SNF Complex Alterations in Tumors with Rhabdoid Features: Novel Therapeutic Approaches and Opportunities for Adoptive Cell Therapy." International Journal of Molecular Sciences 24, no. 13 (2023): 11143. http://dx.doi.org/10.3390/ijms241311143.
Pełny tekst źródłaHasan, Nesrin, and Nita Ahuja. "The Emerging Roles of ATP-Dependent Chromatin Remodeling Complexes in Pancreatic Cancer." Cancers 11, no. 12 (2019): 1859. http://dx.doi.org/10.3390/cancers11121859.
Pełny tekst źródłaCollingwood, TN, FD Urnov, and AP Wolffe. "Nuclear receptors: coactivators, corepressors and chromatin remodeling in the control of transcription." Journal of Molecular Endocrinology 23, no. 3 (1999): 255–75. http://dx.doi.org/10.1677/jme.0.0230255.
Pełny tekst źródłaPadilla-Benavides, Teresita, Pablo Reyes-Gutierrez, and Anthony N. Imbalzano. "Regulation of the Mammalian SWI/SNF Family of Chromatin Remodeling Enzymes by Phosphorylation during Myogenesis." Biology 9, no. 7 (2020): 152. http://dx.doi.org/10.3390/biology9070152.
Pełny tekst źródłaWu, Shuai, Nail Fatkhutdinov, Leah Rosin, et al. "ARID1A spatially partitions interphase chromosomes." Science Advances 5, no. 5 (2019): eaaw5294. http://dx.doi.org/10.1126/sciadv.aaw5294.
Pełny tekst źródłaCruz-Tapia, Roberto Onner, Ana María Cano-Valdez, Abelardo Meneses-García, et al. "Switch/Sucrose Non-Fermentable (SWI/SNF) Complex—Partial Loss in Sinonasal Squamous Cell Carcinoma: A High-Grade Morphology Impact and Progression." Current Issues in Molecular Biology 46, no. 11 (2024): 12183–95. http://dx.doi.org/10.3390/cimb46110723.
Pełny tekst źródłaNgo, Carine, and Sophie Postel-Vinay. "Immunotherapy for SMARCB1-Deficient Sarcomas: Current Evidence and Future Developments." Biomedicines 10, no. 3 (2022): 650. http://dx.doi.org/10.3390/biomedicines10030650.
Pełny tekst źródłaLuo, Qingyu, Xiaowei Wu, Wan Chang, et al. "ARID1A Hypermethylation Disrupts Transcriptional Homeostasis to Promote Squamous Cell Carcinoma Progression." Cancer Research 80, no. 3 (2020): 406–17. http://dx.doi.org/10.1158/0008-5472.can-18-2446.
Pełny tekst źródłaLi, Jing Jing, and Cheok Soon Lee. "The Role of the AT-Rich Interaction Domain 1A Gene (ARID1A) in Human Carcinogenesis." Genes 15, no. 1 (2023): 5. http://dx.doi.org/10.3390/genes15010005.
Pełny tekst źródłaEl Hadidy and Uversky. "Intrinsic Disorder of the BAF Complex: Roles in Chromatin Remodeling and Disease Development." International Journal of Molecular Sciences 20, no. 21 (2019): 5260. http://dx.doi.org/10.3390/ijms20215260.
Pełny tekst źródłaHu, Xiaolong, Mengjie Li, Xue Hao, Yi Lu, Lei Zhang, and Geng Wu. "The Osa-Containing SWI/SNF Chromatin-Remodeling Complex Is Required in the Germline Differentiation Niche for Germline Stem Cell Progeny Differentiation." Genes 12, no. 3 (2021): 363. http://dx.doi.org/10.3390/genes12030363.
Pełny tekst źródłaCrodian, Jennifer S., Bethany M. Weldon, Yu-Chun Tseng, Birgit Cabot, and Ryan Cabot. "Nuclear trafficking dynamics of Bromodomain-containing protein 7 (BRD7), a switch/sucrose non-fermentable (SWI/SNF) chromatin remodelling complex subunit, in porcine oocytes and cleavage-stage embryos." Reproduction, Fertility and Development 31, no. 9 (2019): 1497. http://dx.doi.org/10.1071/rd19030.
Pełny tekst źródłaKang, Jong-Seol, Dongha Kim, Joonwoo Rhee, et al. "Baf155 regulates skeletal muscle metabolism via HIF-1a signaling." PLOS Biology 21, no. 7 (2023): e3002192. http://dx.doi.org/10.1371/journal.pbio.3002192.
Pełny tekst źródłaPeinado, Paola, Alvaro Andrades, Marta Cuadros, et al. "Comprehensive Analysis of SWI/SNF Inactivation in Lung Adenocarcinoma Cell Models." Cancers 12, no. 12 (2020): 3712. http://dx.doi.org/10.3390/cancers12123712.
Pełny tekst źródłaMa, Yue, Natisha R. Field, Tao Xie, et al. "Aberrant SWI/SNF Complex Members Are Predominant in Rare Ovarian Malignancies—Therapeutic Vulnerabilities in Treatment-Resistant Subtypes." Cancers 16, no. 17 (2024): 3068. http://dx.doi.org/10.3390/cancers16173068.
Pełny tekst źródłaAngelico, Giuseppe, Giulio Attanasio, Lorenzo Colarossi, et al. "ARID1A Mutations in Gastric Cancer: A Review with Focus on Clinicopathological Features, Molecular Background and Diagnostic Interpretation." Cancers 16, no. 11 (2024): 2062. http://dx.doi.org/10.3390/cancers16112062.
Pełny tekst źródłaXiao, Lanbo, Abhijit Parolia, Yuanyuan Qiao, et al. "Targeting SWI/SNF ATPases in enhancer-addicted prostate cancer." Nature 601, no. 7893 (2021): 434–39. http://dx.doi.org/10.1038/s41586-021-04246-z.
Pełny tekst źródłaIto, Taiji, Hirotaka Watanabe, Nobutake Yamamichi, et al. "Brm transactivates the telomerase reverse transcriptase (TERT) gene and modulates the splicing patterns of its transcripts in concert with p54nrb." Biochemical Journal 411, no. 1 (2008): 201–9. http://dx.doi.org/10.1042/bj20071075.
Pełny tekst źródłaKrishnamurthy, Nithya, Shumei Kato, Scott Lippman, and Razelle Kurzrock. "Chromatin remodeling (SWI/SNF) complexes, cancer, and response to immunotherapy." Journal for ImmunoTherapy of Cancer 10, no. 9 (2022): e004669. http://dx.doi.org/10.1136/jitc-2022-004669.
Pełny tekst źródłaChinnaiyan, Arul M. "Abstract IA021: Targeting epigenetic regulators of oncogenic transcription factors." Cancer Research 82, no. 23_Supplement_2 (2022): IA021. http://dx.doi.org/10.1158/1538-7445.cancepi22-ia021.
Pełny tekst źródłaXu, Mingyan, Junling Zhang, Xuemei Lu, Fan Liu, Songlin Shi, and Xiaoling Deng. "MiR-199a-5p-Regulated SMARCA4 Promotes Oral Squamous Cell Carcinoma Tumorigenesis." International Journal of Molecular Sciences 24, no. 5 (2023): 4756. http://dx.doi.org/10.3390/ijms24054756.
Pełny tekst źródłaWang, Wenjia, Scott C. Friedland, Bing Guo, et al. "ARID1A, a SWI/SNF subunit, is critical to acinar cell homeostasis and regeneration and is a barrier to transformation and epithelial-mesenchymal transition in the pancreas." Gut 68, no. 7 (2018): 1245–58. http://dx.doi.org/10.1136/gutjnl-2017-315541.
Pełny tekst źródłaGuo, Ao, Hongling Huang, Zhexin Zhu, et al. "The SWI/SNF canonical BAF complex and c-Myc cooperate to promote early fate decisions in CD8+ T cells." Journal of Immunology 208, no. 1_Supplement (2022): 169.02. http://dx.doi.org/10.4049/jimmunol.208.supp.169.02.
Pełny tekst źródłaVan Rechem, Capucine. "EPCO-43. CHROMATIN REMODELERS LOST IN TRANSLATION." Neuro-Oncology 24, Supplement_7 (2022): vii125—vii126. http://dx.doi.org/10.1093/neuonc/noac209.477.
Pełny tekst źródłaVan Rechem, Capucine. "BIOL-04. FROM MSWI/SNF’S ROLES IN PROTEIN SYNTHESIS TO NEW THERAPEUTIC OPPORTUNITIES." Neuro-Oncology 25, Supplement_1 (2023): i6. http://dx.doi.org/10.1093/neuonc/noad073.023.
Pełny tekst źródłaYao, Xiaosai, Jing Han Hong, Amrita Nargund та Bin Tean Teh. "Abstract B006: PBRM1-deficient PBAF complexes target de novo genomic loci to activate NF-κB pathway in kidney cancer". Cancer Research 82, № 23_Supplement_2 (2022): B006. http://dx.doi.org/10.1158/1538-7445.cancepi22-b006.
Pełny tekst źródłaPawel, Bruce R. "SMARCB1-deficient Tumors of Childhood: A Practical Guide." Pediatric and Developmental Pathology 21, no. 1 (2017): 6–28. http://dx.doi.org/10.1177/1093526617749671.
Pełny tekst źródłaGong, Wangqiu, Congwei Luo, Fenfen Peng та ін. "Brahma-related gene-1 promotes tubular senescence and renal fibrosis through Wnt/β-catenin/autophagy axis". Clinical Science 135, № 15 (2021): 1873–95. http://dx.doi.org/10.1042/cs20210447.
Pełny tekst źródłaHalaoui, Adham, Najla Kfoury-Beaumont, and Thomas Beaumont. "Abstract B011: Sex-specific chromatin remodeling drives tumorigenesis in glioblastoma." Cancer Research 84, no. 5_Supplement_1 (2024): B011. http://dx.doi.org/10.1158/1538-7445.brain23-b011.
Pełny tekst źródłaMorin, Andrew, Darya Wodetzki, Bethany Veo, et al. "ATRT-24. CDK7 Inhibition in AT/RT." Neuro-Oncology 24, Supplement_1 (2022): i8. http://dx.doi.org/10.1093/neuonc/noac079.023.
Pełny tekst źródłaAbraham, Ajay, Daniela Samaniego-Castruita, Jillian Paladino, et al. "Loss of SWI/SNF Complex Subunit Arid1a in B Cells Promotes Inflammation and Perturbs Germinal Center B Cell Responses." Blood 142, Supplement 1 (2023): 1400. http://dx.doi.org/10.1182/blood-2023-189789.
Pełny tekst źródłaMota, Mateus, Stefan Sweha, Matt Pun, et al. "Abstract PR-007: H3.3K27M diffuse midline gliomas are sensitive to SWI/SNF chromatin remodeler degradation." Cancer Research 84, no. 5_Supplement_1 (2024): PR—007—PR—007. http://dx.doi.org/10.1158/1538-7445.brain23-pr-007.
Pełny tekst źródłaBasu, Gargi D., Tracey White, Janine R. LoBello, et al. "ARID1A alterations in gastrointestinal cancers as therapeutic opportunities." Journal of Clinical Oncology 34, no. 4_suppl (2016): 671. http://dx.doi.org/10.1200/jco.2016.34.4_suppl.671.
Pełny tekst źródłaMachado, Annette Alexandra, Prit Benny Malgulwar, and Jason T. Huse. "EPCO-21. ELUCIDATING THE FUNCTIONAL RELEVANCE OF ATRX-DEFICIENCY IN H3.3-G34-MUTANT DIFFUSE HEMISPHERIC GLIOMA." Neuro-Oncology 26, Supplement_8 (2024): viii5. http://dx.doi.org/10.1093/neuonc/noae165.0020.
Pełny tekst źródłaElzamly, S., A. Murzabdillaeva, H. Taha, M. Shitawi, and H. Zhu. "SMARCA4 Deficient Thoracic Sarcoma Presenting with a Pathologic Fracture of Proximal Tibia and L5 Vertebral Body: a Case Report and Review of Literature." American Journal of Clinical Pathology 154, Supplement_1 (2020): S40—S41. http://dx.doi.org/10.1093/ajcp/aqaa161.085.
Pełny tekst źródłaHancock, Wayne W., Yan Xiong, Liqing Wang, et al. "Abstract 6041: Targeting the NuRD component, CHD4, impairs Foxp3+ Treg cell production and function and promotes anti-tumor immunity." Cancer Research 85, no. 8_Supplement_1 (2025): 6041. https://doi.org/10.1158/1538-7445.am2025-6041.
Pełny tekst źródłaParolia, Abhijit, Lanbo Xiao, Yuanyuan Qiao, et al. "Abstract 3592: Targeting SWI/SNF ATPases in enhancer-addicted human cancers." Cancer Research 82, no. 12_Supplement (2022): 3592. http://dx.doi.org/10.1158/1538-7445.am2022-3592.
Pełny tekst źródłaXiao, Lanbo, Abhijit Parolia, Yuanyuan Qiao, et al. "Abstract 5469: Targeting SWI/SNF ATPases in enhancer-addicted prostate cancer." Cancer Research 82, no. 12_Supplement (2022): 5469. http://dx.doi.org/10.1158/1538-7445.am2022-5469.
Pełny tekst źródłaHore, Pradipta, Sandipkumar Bambhaniya, and Murali Dharan Bashyam. "Abstract 264: The E3 ubiquitin ligase WWP2 regulates stability of the chromatin remodeler ARID1B." Cancer Research 85, no. 8_Supplement_1 (2025): 264. https://doi.org/10.1158/1538-7445.am2025-264.
Pełny tekst źródłaKhosrowjerdi, Sara J., Nora K. Horick, Jeffrey William Clark, et al. "Clinical and mutational profile of ARID1A-mutated gastrointestinal cancers: Duration of response to platinum-based chemotherapy." Journal of Clinical Oncology 39, no. 15_suppl (2021): e15611-e15611. http://dx.doi.org/10.1200/jco.2021.39.15_suppl.e15611.
Pełny tekst źródłaBajaj, Anubha. "Exiguous and Scarce-SMARCB1 Deficient Medullary Renal Cell Carcinoma." Cell & Cellular Life Sciences Journal 8, no. 2 (2023): 1–4. http://dx.doi.org/10.23880/cclsj-16000188.
Pełny tekst źródłaHo, Rebecca, Bengul Gokbayrak, Eunice Li, et al. "Abstract 443: Targeting therapeutic vulnerabilities mediated by epigenetic reprogramming in ARID1A and ARID1B dual-deficient gynecologic cancers." Cancer Research 85, no. 8_Supplement_1 (2025): 443. https://doi.org/10.1158/1538-7445.am2025-443.
Pełny tekst źródłaWedekind, Mary Frances, Srivandana Akshintala, Brigitte C. Widemann, et al. "Phase 1/2 study of tiragolumab and atezolizumab in patients with relapsed or refractory SMARCB1 or SMARCA4 deficient tumors." Journal of Clinical Oncology 41, no. 16_suppl (2023): TPS10066. http://dx.doi.org/10.1200/jco.2023.41.16_suppl.tps10066.
Pełny tekst źródłaLin, Frank Po-Yen, Subotheni Thavaneswaran, Christine E. Napier, et al. "Genomic therapy matching in rare and refractory cancers: Updated results from a retrospective cohort study in the Molecular Screening and Therapeutic (MoST) program." Journal of Clinical Oncology 41, no. 16_suppl (2023): 1540. http://dx.doi.org/10.1200/jco.2023.41.16_suppl.1540.
Pełny tekst źródła