Artykuły w czasopismach na temat „Compositionally graded materials”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Compositionally graded materials”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Coco, Lorenzo, Florent Lefevre-Schlick, Olivier Bouaziz, Xiang Wang, J. K. Solberg, and David Embury. "The mechanical response of compositionally graded materials." Materials Science and Engineering: A 483-484 (June 2008): 266–69. http://dx.doi.org/10.1016/j.msea.2006.12.164.
Pełny tekst źródłaTorrecillas, R. "Compositionally graded zirconia-molybdenum materials without residual stress." Metal Powder Report 57, no. 6 (2002): 54. http://dx.doi.org/10.1016/s0026-0657(02)80261-2.
Pełny tekst źródłaZhong, S., S. P. Alpay, Z. G. Ban, and J. V. Mantese. "Effective pyroelectric response of compositionally graded ferroelectric materials." Applied Physics Letters 86, no. 9 (2005): 092903. http://dx.doi.org/10.1063/1.1866505.
Pełny tekst źródłaChéhab, Béchir, Hatem Zurob, David Embury, Olivier Bouaziz, and Yves Brechet. "Compositionally Graded Steels: A Strategy for Materials Development." Advanced Engineering Materials 11, no. 12 (2009): 992–99. http://dx.doi.org/10.1002/adem.200900180.
Pełny tekst źródłaPopa, Monica, José-Maria Calderón Moreno, Pavol Hvizdoš, Raúl Bermejo, and Guy Anné. "Residual Stress Profile Determined by Piezo-Spectroscopy in Alumina/Alumina-Zirconia Layers Separated by a Compositionally Graded Intermediate Layer." Key Engineering Materials 290 (July 2005): 328–31. http://dx.doi.org/10.4028/www.scientific.net/kem.290.328.
Pełny tekst źródłaWu, Jiagang, John Wang, Dingquan Xiao, and Jianguo Zhu. "Compositionally graded bismuth ferrite thin films." Journal of Alloys and Compounds 509, no. 35 (2011): L319—L323. http://dx.doi.org/10.1016/j.jallcom.2011.05.076.
Pełny tekst źródłaSuresh, S., A. E. Giannakopoulos, and J. Alcalá. "Spherical indentation of compositionally graded materials: Theory and experiments." Acta Materialia 45, no. 4 (1997): 1307–21. http://dx.doi.org/10.1016/s1359-6454(96)00291-1.
Pełny tekst źródłaKim, Yeon-Wook, Tae-Hyun Nam, and Seong-Min Lee. "Martensitic Transformation Behaviors of Compositionally Graded Ti–Ni-Based Shape Memory Alloys." Science of Advanced Materials 12, no. 10 (2020): 1586–90. http://dx.doi.org/10.1166/sam.2020.3802.
Pełny tekst źródłaPeka, H. P., D. A. Pulemyotov, and M. P. Verkhovodov. "Compositionally graded semiconductors with intervalley crossover." Semiconductor Science and Technology 8, no. 8 (1993): 1517–22. http://dx.doi.org/10.1088/0268-1242/8/8/006.
Pełny tekst źródłaKlic, A., and M. Marvan. "Pseudo-spin model of compositionally graded ferroelectrics." Phase Transitions 79, no. 6-7 (2006): 493–503. http://dx.doi.org/10.1080/01411590600892377.
Pełny tekst źródłaShut, V. N., S. R. Syrtsov, and V. L. Trublovsky. "Ferroelectric properties of compositionally graded BST ceramics." Phase Transitions 83, no. 5 (2010): 368–77. http://dx.doi.org/10.1080/01411594.2010.484900.
Pełny tekst źródłaBan, Z. G., S. P. Alpay, and J. V. Mantese. "Hysteresis Offset and Dielectric Response of Compositionally Graded Ferroelectric Materials." Integrated Ferroelectrics 58, no. 1 (2003): 1281–91. http://dx.doi.org/10.1080/10584580390259470.
Pełny tekst źródłaRousseau, C. E., and H. V. Tippur. "Compositionally graded materials with cracks normal to the elastic gradient." Acta Materialia 48, no. 16 (2000): 4021–33. http://dx.doi.org/10.1016/s1359-6454(00)00202-0.
Pełny tekst źródłaZeng, Minxiang, Yipu Du, Qiang Jiang, et al. "High-throughput printing of combinatorial materials from aerosols." Nature 617, no. 7960 (2023): 292–98. http://dx.doi.org/10.1038/s41586-023-05898-9.
Pełny tekst źródłaGam, J. S., K. S. Han, S. S. Park, and H. C. Park. "Joining of TiB2-AL2O3Using Compositionally Graded Interlayers." Materials and Manufacturing Processes 14, no. 4 (1999): 537–46. http://dx.doi.org/10.1080/10426919908914848.
Pełny tekst źródłaLee, Kenneth E., and Eugene A. Fitzgerald. "High-quality metamorphic compositionally graded InGaAs buffers." Journal of Crystal Growth 312, no. 2 (2010): 250–57. http://dx.doi.org/10.1016/j.jcrysgro.2009.10.041.
Pełny tekst źródłaGao, Lei. "Optical nonlinearity enhancement of compositionally graded films." European Physical Journal B 44, no. 4 (2005): 481–86. http://dx.doi.org/10.1140/epjb/e2005-00147-x.
Pełny tekst źródłaZhang, Tong-Yi. "A dislocation in a compositionally graded epilayer." Physica Status Solidi (a) 148, no. 1 (1995): 175–89. http://dx.doi.org/10.1002/pssa.2211480115.
Pełny tekst źródłaNakano, Junichi, Kimio Fujii, and Reiji Yamada. "Mechanical Properties of Oxidation-Resistant SiC/C Compositionally Graded Graphite Materials." Journal of the American Ceramic Society 80, no. 11 (1997): 2897–902. http://dx.doi.org/10.1111/j.1151-2916.1997.tb03209.x.
Pełny tekst źródłaRoumina, R., J. D. Embury, O. Bouaziz, and H. S. Zurob. "Mechanical behavior of a compositionally graded 300M steel." Materials Science and Engineering: A 578 (August 2013): 140–49. http://dx.doi.org/10.1016/j.msea.2013.04.006.
Pełny tekst źródłaKulkarni, Tushar, H. Z. Wang, S. N. Basu, and V. K. Sarin. "Compositionally graded mullite-based chemical vapor deposited coatings." Journal of Materials Research 24, no. 2 (2009): 470–74. http://dx.doi.org/10.1557/jmr.2009.0062.
Pełny tekst źródłaVallone, Marco, Michele Goano, Francesco Bertazzi, et al. "FDTD simulation of compositionally graded HgCdTe photodetectors." Infrared Physics & Technology 97 (March 2019): 203–9. http://dx.doi.org/10.1016/j.infrared.2018.12.041.
Pełny tekst źródłaOkatan, M. B., A. L. Roytburd, V. Nagarajan, and S. P. Alpay. "Electrical domain morphologies in compositionally graded ferroelectric films." Journal of Physics: Condensed Matter 24, no. 2 (2011): 024215. http://dx.doi.org/10.1088/0953-8984/24/2/024215.
Pełny tekst źródłaPal, R., A. Malik, V. Srivastav, et al. "Compositionally graded interface for passivation of HgCdTe photodiodes." Journal of Electronic Materials 35, no. 10 (2006): 1793–800. http://dx.doi.org/10.1007/s11664-006-0159-0.
Pełny tekst źródłaCai, Minglei, Tedi Kujofsa, Xinkang Chen, Md Tanvirul Islam, and John E. Ayers. "Interaction Length for Dislocations in Compositionally-Graded Heterostructures." International Journal of High Speed Electronics and Systems 27, no. 03n04 (2018): 1840022. http://dx.doi.org/10.1142/s0129156418400220.
Pełny tekst źródłaWeiss, C. V., M. B. Okatan, S. P. Alpay, M. W. Cole, E. Ngo, and R. C. Toonen. "Compositionally graded ferroelectric multilayers for frequency agile tunable devices." Journal of Materials Science 44, no. 19 (2009): 5364–74. http://dx.doi.org/10.1007/s10853-009-3514-8.
Pełny tekst źródłaWang, C. L., X. S. Wang, Y. Xin, et al. "Phase transition properties of compositionally graded ferroelectric structure." Ferroelectrics 252, no. 1 (2001): 89–96. http://dx.doi.org/10.1080/00150190108016244.
Pełny tekst źródłaShut, V. N., S. R. Syrtsov, V. L. Trublovsky, A. D. Poleyko, S. V. Kostomarov, and L. P. Mastyko. "Compositionally Graded BST Ceramics Prepared by Tape Casting." Ferroelectrics 386, no. 1 (2009): 125–32. http://dx.doi.org/10.1080/00150190902961876.
Pełny tekst źródłaChapa-cabrera, J., and I. E. Reimanis. "Crack deflection in compositionally graded Cu-W composites." Philosophical Magazine A 82, no. 17-18 (2002): 3393–403. http://dx.doi.org/10.1080/01418610208240450.
Pełny tekst źródłaChapa-Cabrera, J., and I. E. Reimanis. "Crack deflection in compositionally graded Cu–W composites." Philosophical Magazine A 82, no. 17 (2002): 3393–403. http://dx.doi.org/10.1080/0141861021000017819.
Pełny tekst źródłaCho, Kyung Mok, Il Dong Choi, and Ik Min Park. "Thermal Properties and Fracture Behavior of Compositionally Graded Al-SiCp Composites." Materials Science Forum 449-452 (March 2004): 621–24. http://dx.doi.org/10.4028/www.scientific.net/msf.449-452.621.
Pełny tekst źródłaMarvan, M., and J. Fousek. "Pyroelectricity and thermodynamic theory of compositionally graded ferroelectric films." Phase Transitions 79, no. 1-2 (2006): 153–62. http://dx.doi.org/10.1080/01411590600555834.
Pełny tekst źródłaKim, Eun Seong, Jeong Min Park, Gangaraju Manogna Karthik, et al. "Local composition detouring for defect-free compositionally graded materials in additive manufacturing." Materials Research Letters 11, no. 7 (2023): 586–94. http://dx.doi.org/10.1080/21663831.2023.2192244.
Pełny tekst źródłaSingh, Rajiv, and James Fitz-Gerald. "Surface composites: A new class of engineered materials." Journal of Materials Research 12, no. 3 (1997): 769–73. http://dx.doi.org/10.1557/jmr.1997.0112.
Pełny tekst źródłaMerino, Rosa I., J. I. Peña, and V. M. Orera. "Compositionally graded YSZ–NiO composites by surface laser melting." Journal of the European Ceramic Society 30, no. 2 (2010): 147–52. http://dx.doi.org/10.1016/j.jeurceramsoc.2009.04.031.
Pełny tekst źródłaOu, Canlin, Lu Zhang, Qingshen Jing, Vijay Narayan, and Sohini Kar‐Narayan. "Compositionally Graded Organic–Inorganic Nanocomposites for Enhanced Thermoelectric Performance." Advanced Electronic Materials 6, no. 1 (2019): 1900720. http://dx.doi.org/10.1002/aelm.201900720.
Pełny tekst źródłaBen-Artzy, A., A. Reichardt, J. P. Borgonia, et al. "Compositionally graded SS316 to C300 Maraging steel using additive manufacturing." Materials & Design 201 (March 2021): 109500. http://dx.doi.org/10.1016/j.matdes.2021.109500.
Pełny tekst źródłaYahyaoui, N., S. Aloulou, R. Chtourou, A. Sfaxi, and M. Oueslati. "Optical properties of compositionally graded InxAl1–xAs/GaAs heterostructures." Thin Solid Films 516, no. 7 (2008): 1604–7. http://dx.doi.org/10.1016/j.tsf.2007.03.083.
Pełny tekst źródłaMatsumoto, Yuji, Shingo Maruyama, and Kenichi Kaminaga. "Compositionally graded crystals as a revived approach for new crystal engineering for the exploration of novel functionalities." CrystEngComm 24, no. 13 (2022): 2359–69. http://dx.doi.org/10.1039/d2ce00041e.
Pełny tekst źródłaAdikary, Sudarman Upali, Balakrishnan Sundaravel, Helen Lai-Wa Chan, Ian Howard Wilson, and Chung-Loong Choy. "Rutherford backscattering analysis of compositionally graded BaxSr1-xTiO3thin films." Ferroelectrics 262, no. 1 (2001): 287–92. http://dx.doi.org/10.1080/00150190108225164.
Pełny tekst źródłaChen, Chang, Zi Liu, Gui Wang, and Xiao Feng. "Fabrication and characterization of compositionally graded Bi1−x GdxFeO3 thin films." Materials Science-Poland 32, no. 3 (2014): 498–502. http://dx.doi.org/10.2478/s13536-014-0213-1.
Pełny tekst źródłaZHONG, S., S. ALPAY, Z. G. BAN, and J. V. MANTESE. "DIELECTRIC PERMITTIVITY AND PYROELECTRIC RESPONSE OF COMPOSITIONALLY GRADED FERROELECTRICS." Integrated Ferroelectrics 71, no. 1 (2005): 1–9. http://dx.doi.org/10.1080/10584580590965005.
Pełny tekst źródłaSbrockey, N. M., M. W. Cole, T. S. Kalkur, M. Luong, J. E. Spanier, and G. S. Tompa. "MOCVD Growth of Compositionally Graded BaxSr1-xTiO3 Thin Films." Integrated Ferroelectrics 126, no. 1 (2011): 21–27. http://dx.doi.org/10.1080/10584587.2011.574975.
Pełny tekst źródłaJia, Mingyong, Fei Chen, Yueqi Wu, et al. "Microstructure and shear fracture behavior of Mo/AlN/Mo symmetrical compositionally graded materials." Materials Science and Engineering: A 834 (February 2022): 142591. http://dx.doi.org/10.1016/j.msea.2021.142591.
Pełny tekst źródłaJandl, Adam, Mayank T. Bulsara, and Eugene A. Fitzgerald. "Materials properties and dislocation dynamics in InAsP compositionally graded buffers on InP substrates." Journal of Applied Physics 115, no. 15 (2014): 153503. http://dx.doi.org/10.1063/1.4871289.
Pełny tekst źródłaSakai, Joe, José Manuel Caicedo Roque, Pablo Vales-Castro, et al. "Control of Lateral Composition Distribution in Graded Films of Soluble Solid Systems A1−xBx by Partitioned Dual-Beam Pulsed Laser Deposition." Coatings 10, no. 6 (2020): 540. http://dx.doi.org/10.3390/coatings10060540.
Pełny tekst źródłaLi, Xuefei, Jianming Xu, Tieshi Wei, et al. "Enhanced Properties of Extended Wavelength InGaAs on Compositionally Undulating Step-Graded InAsP Buffers Grown by Molecular Beam Epitaxy." Crystals 11, no. 12 (2021): 1590. http://dx.doi.org/10.3390/cryst11121590.
Pełny tekst źródłaAdikary, S. U., and H. L. W. Chan. "Compositionally graded BaxSr1−xTiO3 thin films for tunable microwave applications." Materials Chemistry and Physics 79, no. 2-3 (2003): 157–60. http://dx.doi.org/10.1016/s0254-0584(02)00255-9.
Pełny tekst źródłaAyers, J. E., Tedi Kujofsa, Johanna Raphael, and Md Tanvirul Islam. "Recent Advances in the Modeling of Strain Relaxation and Dislocation Dynamics in InGaAs/GaAs (001) Heterostructures." International Journal of High Speed Electronics and Systems 29, no. 01n04 (2020): 2040005. http://dx.doi.org/10.1142/s0129156420400054.
Pełny tekst źródłaZheng, Ting, Yungang Yu, Haobin Lei, et al. "Compositionally Graded KNN‐Based Multilayer Composite with Excellent Piezoelectric Temperature Stability." Advanced Materials 34, no. 8 (2022): 2109175. http://dx.doi.org/10.1002/adma.202109175.
Pełny tekst źródła