Artykuły w czasopismach na temat „Computational Differential Privacy”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Computational Differential Privacy”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Bhavani Sankar Telaprolu. "Privacy-Preserving Federated Learning in Healthcare - A Secure AI Framework". International Journal of Scientific Research in Computer Science, Engineering and Information Technology 10, nr 3 (16.07.2024): 703–7. https://doi.org/10.32628/cseit2410347.
Pełny tekst źródłaEt. al., Dr Priyank Jain,. "Differentially Private Data Release: Bias Weight Perturbation Method - A Novel Approach". Turkish Journal of Computer and Mathematics Education (TURCOMAT) 12, nr 10 (28.04.2021): 7165–73. http://dx.doi.org/10.17762/turcomat.v12i10.5607.
Pełny tekst źródłaKii, Masanobu, Atsunori Ichikawa i Takayuki Miura. "Lightweight Two-Party Secure Sampling Protocol for Differential Privacy". Proceedings on Privacy Enhancing Technologies 2025, nr 1 (styczeń 2025): 23–36. http://dx.doi.org/10.56553/popets-2025-0003.
Pełny tekst źródłaMeisingseth, Fredrik, i Christian Rechberger. "SoK: Computational and Distributed Differential Privacy for MPC". Proceedings on Privacy Enhancing Technologies 2025, nr 1 (styczeń 2025): 420–39. http://dx.doi.org/10.56553/popets-2025-0023.
Pełny tekst źródłaKim, Jongwook. "DistOD: A Hybrid Privacy-Preserving and Distributed Framework for Origin–Destination Matrix Computation". Electronics 13, nr 22 (19.11.2024): 4545. http://dx.doi.org/10.3390/electronics13224545.
Pełny tekst źródłaFang, Juanru, i Ke Yi. "Privacy Amplification by Sampling under User-level Differential Privacy". Proceedings of the ACM on Management of Data 2, nr 1 (12.03.2024): 1–26. http://dx.doi.org/10.1145/3639289.
Pełny tekst źródłaAlborch Escobar, Ferran, Sébastien Canard, Fabien Laguillaumie i Duong Hieu Phan. "Computational Differential Privacy for Encrypted Databases Supporting Linear Queries". Proceedings on Privacy Enhancing Technologies 2024, nr 4 (październik 2024): 583–604. http://dx.doi.org/10.56553/popets-2024-0131.
Pełny tekst źródłaLiu, Hai, Zhenqiang Wu, Yihui Zhou, Changgen Peng, Feng Tian i Laifeng Lu. "Privacy-Preserving Monotonicity of Differential Privacy Mechanisms". Applied Sciences 8, nr 11 (28.10.2018): 2081. http://dx.doi.org/10.3390/app8112081.
Pełny tekst źródłaPavan Kumar Vadrevu. "Scalable Approaches for Enhancing Privacy in Blockchain Networks: A Comprehensive Review of Differential Privacy Techniques". Journal of Information Systems Engineering and Management 10, nr 8s (31.01.2025): 635–48. https://doi.org/10.52783/jisem.v10i8s.1119.
Pełny tekst źródłaHong, Yiyang, Xingwen Zhao, Hui Zhu i Hui Li. "A Blockchain-Integrated Divided-Block Sparse Matrix Transformation Differential Privacy Data Publishing Model". Security and Communication Networks 2021 (7.12.2021): 1–15. http://dx.doi.org/10.1155/2021/2418539.
Pełny tekst źródłaMeisingseth, Fredrik, Christian Rechberger i Fabian Schmid. "Practical Two-party Computational Differential Privacy with Active Security". Proceedings on Privacy Enhancing Technologies 2025, nr 1 (styczeń 2025): 341–60. http://dx.doi.org/10.56553/popets-2025-0019.
Pełny tekst źródłaKim, Jongwook, i Sae-Hong Cho. "A Differential Privacy Framework with Adjustable Efficiency–Utility Trade-Offs for Data Collection". Mathematics 13, nr 5 (28.02.2025): 812. https://doi.org/10.3390/math13050812.
Pełny tekst źródłaMr. Samadhan Palkar, Prof. (Dr.) Raghav Mehra i Prof. (Dr.) Lingaraj Hadimani. "Hyper Parameters Optimization for Gaussian Mechanism with Coyote-Badger and Kriging Model for EHR". International Research Journal on Advanced Engineering Hub (IRJAEH) 3, nr 02 (14.02.2025): 152–55. https://doi.org/10.47392/irjaeh.2025.0020.
Pełny tekst źródłaNi, Guangyuan, i Jiaxin Sun. "Differential privacy protection algorithm for large data sources based on normalized information entropy Bayesian network". Journal of Physics: Conference Series 2813, nr 1 (1.08.2024): 012012. http://dx.doi.org/10.1088/1742-6596/2813/1/012012.
Pełny tekst źródłaJain, Pinkal, Vikas Thada i Deepak Motwani. "Providing Highest Privacy Preservation Scenario for Achieving Privacy in Confidential Data". International Journal of Experimental Research and Review 39, Spl Volume (30.05.2024): 190–99. http://dx.doi.org/10.52756/ijerr.2024.v39spl.015.
Pełny tekst źródłaMudassar, Bakhtawar, Shahzaib Tahir, Fawad Khan, Syed Aziz Shah, Syed Ikram Shah i Qammer Hussain Abbasi. "Privacy-Preserving Data Analytics in Internet of Medical Things". Future Internet 16, nr 11 (5.11.2024): 407. http://dx.doi.org/10.3390/fi16110407.
Pełny tekst źródłaAlmadhoun, Nour, Erman Ayday i Özgür Ulusoy. "Inference attacks against differentially private query results from genomic datasets including dependent tuples". Bioinformatics 36, Supplement_1 (1.07.2020): i136—i145. http://dx.doi.org/10.1093/bioinformatics/btaa475.
Pełny tekst źródłaC.Kanmani Pappa. "Zero-Trust Cryptographic Protocols and Differential Privacy Techniques for Scalable Secure Multi-Party Computation in Big Data Analytics". Journal of Electrical Systems 20, nr 5s (13.04.2024): 2114–23. http://dx.doi.org/10.52783/jes.2550.
Pełny tekst źródłaKim, Hyeong-Geon, Jinmyeong Shin i Yoon-Ho Choi. "Human-Unrecognizable Differential Private Noised Image Generation Method". Sensors 24, nr 10 (16.05.2024): 3166. http://dx.doi.org/10.3390/s24103166.
Pełny tekst źródłaAbdulbaqi, Azmi Shawkat, Adil M. Salman i Sagar B. Tambe. "Privacy-Preserving Data Mining Techniques in Big Data: Balancing Security and Usability". SHIFRA 2023 (10.01.2023): 1–9. http://dx.doi.org/10.70470/shifra/2023/001.
Pełny tekst źródłaGruska, Damas P. "Differential Privacy and Security". Fundamenta Informaticae 143, nr 1-2 (2.02.2016): 73–87. http://dx.doi.org/10.3233/fi-2016-1304.
Pełny tekst źródłaXiao, Xiaokui, Guozhang Wang i Johannes Gehrke. "Differential Privacy via Wavelet Transforms". IEEE Transactions on Knowledge and Data Engineering 23, nr 8 (sierpień 2011): 1200–1214. http://dx.doi.org/10.1109/tkde.2010.247.
Pełny tekst źródłaZhang, Guowei, Shengjian Zhang, Zhiyi Man, Chenlin Cui i Wenli Hu. "Location Privacy Protection in Edge Computing: Co-Design of Differential Privacy and Offloading Mode". Electronics 13, nr 13 (7.07.2024): 2668. http://dx.doi.org/10.3390/electronics13132668.
Pełny tekst źródłaWang, Lin, Xingang Xu, Xuhui Zhao, Baozhu Li, Ruijuan Zheng i Qingtao Wu. "A randomized block policy gradient algorithm with differential privacy in Content Centric Networks". International Journal of Distributed Sensor Networks 17, nr 12 (grudzień 2021): 155014772110599. http://dx.doi.org/10.1177/15501477211059934.
Pełny tekst źródłaDu, Yuntao, Yujia Hu, Zhikun Zhang, Ziquan Fang, Lu Chen, Baihua Zheng i Yunjun Gao. "LDPTrace: Locally Differentially Private Trajectory Synthesis". Proceedings of the VLDB Endowment 16, nr 8 (kwiecień 2023): 1897–909. http://dx.doi.org/10.14778/3594512.3594520.
Pełny tekst źródłaLu, Kangjie. "Noise Addition Strategies for Differential Privacy in Stochastic Gradient Descent". Transactions on Computer Science and Intelligent Systems Research 5 (12.08.2024): 960–67. http://dx.doi.org/10.62051/f2kew975.
Pełny tekst źródłaAdeyinka Ogunbajo, Itunu Taiwo, Adefemi Quddus Abidola, Oluwadamilola Fisayo Adediran i Israel Agbo-Adediran. "Privacy preserving AI models for decentralized data management in federated information systems". GSC Advanced Research and Reviews 22, nr 2 (28.02.2025): 104–12. https://doi.org/10.30574/gscarr.2025.22.2.0043.
Pełny tekst źródłaShin, Hyejin, Sungwook Kim, Junbum Shin i Xiaokui Xiao. "Privacy Enhanced Matrix Factorization for Recommendation with Local Differential Privacy". IEEE Transactions on Knowledge and Data Engineering 30, nr 9 (1.09.2018): 1770–82. http://dx.doi.org/10.1109/tkde.2018.2805356.
Pełny tekst źródłaLiu, Fang. "Generalized Gaussian Mechanism for Differential Privacy". IEEE Transactions on Knowledge and Data Engineering 31, nr 4 (1.04.2019): 747–56. http://dx.doi.org/10.1109/tkde.2018.2845388.
Pełny tekst źródłaLaeuchli, Jesse, Yunior Ramírez-Cruz i Rolando Trujillo-Rasua. "Analysis of centrality measures under differential privacy models". Applied Mathematics and Computation 412 (styczeń 2022): 126546. http://dx.doi.org/10.1016/j.amc.2021.126546.
Pełny tekst źródłaHan, Yuchen. "Research on machine learning technology with privacy protection strategy in recommendation field". Applied and Computational Engineering 43, nr 1 (26.02.2024): 294–99. http://dx.doi.org/10.54254/2755-2721/43/20230848.
Pełny tekst źródłaMunn, Luke, Tsvetelina Hristova i Liam Magee. "Clouded data: Privacy and the promise of encryption". Big Data & Society 6, nr 1 (styczeń 2019): 205395171984878. http://dx.doi.org/10.1177/2053951719848781.
Pełny tekst źródłaZhao, Jianzhe, Mengbo Yang, Ronglin Zhang, Wuganjing Song, Jiali Zheng, Jingran Feng i Stan Matwin. "Privacy-Enhanced Federated Learning: A Restrictively Self-Sampled and Data-Perturbed Local Differential Privacy Method". Electronics 11, nr 23 (2.12.2022): 4007. http://dx.doi.org/10.3390/electronics11234007.
Pełny tekst źródłaXu, Shasha, i Xiufang Yin. "Recommendation System for Privacy-Preserving Education Technologies". Computational Intelligence and Neuroscience 2022 (16.04.2022): 1–8. http://dx.doi.org/10.1155/2022/3502992.
Pełny tekst źródłaVyas, Bhuman. "PRIVACY –PRESERVING DATA VAULTS: SAFE GUARDING PILL INFORMATION IN THE DIGITAL AGE". International Journal of Innovative Research in Advanced Engineering 06, nr 10 (30.10.2019): 616–23. http://dx.doi.org/10.26562/ijirae.2019.v0610.04.
Pełny tekst źródłaYang, Zhijie, Xiaolong Yan, Guoguang Chen, Mingli Niu i Xiaoli Tian. "Towards Federated Robust Approximation of Nonlinear Systems with Differential Privacy Guarantee". Electronics 14, nr 5 (26.02.2025): 937. https://doi.org/10.3390/electronics14050937.
Pełny tekst źródłaKim, Jong-Wook. "Differential Privacy-Based Data Collection for Improving Data Utility and Reducing Computational Overhead". Transactions of The Korean Institute of Electrical Engineers 74, nr 1 (31.01.2025): 102–8. https://doi.org/10.5370/kiee.2025.74.1.102.
Pełny tekst źródłaParvandeh, Saeid, Hung-Wen Yeh, Martin P. Paulus i Brett A. McKinney. "Consensus features nested cross-validation". Bioinformatics 36, nr 10 (27.01.2020): 3093–98. http://dx.doi.org/10.1093/bioinformatics/btaa046.
Pełny tekst źródłaWang, Ji, Weidong Bao, Lichao Sun, Xiaomin Zhu, Bokai Cao i Philip S. Yu. "Private Model Compression via Knowledge Distillation". Proceedings of the AAAI Conference on Artificial Intelligence 33 (17.07.2019): 1190–97. http://dx.doi.org/10.1609/aaai.v33i01.33011190.
Pełny tekst źródłaÖzdel, Süleyman, Efe Bozkir i Enkelejda Kasneci. "Privacy-preserving Scanpath Comparison for Pervasive Eye Tracking". Proceedings of the ACM on Human-Computer Interaction 8, ETRA (20.05.2024): 1–28. http://dx.doi.org/10.1145/3655605.
Pełny tekst źródłaMin, Minghui, Zeqian Liu, Jincheng Duan, Peng Zhang i Shiyin Li. "Safe-Learning-Based Location-Privacy-Preserved Task Offloading in Mobile Edge Computing". Electronics 13, nr 1 (25.12.2023): 89. http://dx.doi.org/10.3390/electronics13010089.
Pełny tekst źródłaChen, Xiang, Dun Zhang, Zhan-Qi Cui, Qing Gu i Xiao-Lin Ju. "DP-Share: Privacy-Preserving Software Defect Prediction Model Sharing Through Differential Privacy". Journal of Computer Science and Technology 34, nr 5 (wrzesień 2019): 1020–38. http://dx.doi.org/10.1007/s11390-019-1958-0.
Pełny tekst źródłaDong, Yipeng, Wei Luo, Xiangyang Wang, Lei Zhang, Lin Xu, Zehao Zhou i Lulu Wang. "Multi-Task Federated Split Learning Across Multi-Modal Data with Privacy Preservation". Sensors 25, nr 1 (3.01.2025): 233. https://doi.org/10.3390/s25010233.
Pełny tekst źródłaElhattab, Fatima, Sara Bouchenak i Cédric Boscher. "PASTEL". Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 7, nr 4 (19.12.2023): 1–29. http://dx.doi.org/10.1145/3633808.
Pełny tekst źródłaÖksüz, Abdullah Çağlar, Erman Ayday i Uğur Güdükbay. "Privacy-preserving and robust watermarking on sequential genome data using belief propagation and local differential privacy". Bioinformatics 37, nr 17 (25.02.2021): 2668–74. http://dx.doi.org/10.1093/bioinformatics/btab128.
Pełny tekst źródłaLuo, Yuan, i Nicholas R. Jennings. "A Differential Privacy Mechanism that Accounts for Network Effects for Crowdsourcing Systems". Journal of Artificial Intelligence Research 69 (3.12.2020): 1127–64. http://dx.doi.org/10.1613/jair.1.12158.
Pełny tekst źródłaRahman, Ashequr, Asif Iqbal, Emon Ahmed, Tanvirahmedshuvo . i Md Risalat Hossain Ontor. "PRIVACY-PRESERVING MACHINE LEARNING: TECHNIQUES, CHALLENGES, AND FUTURE DIRECTIONS IN SAFEGUARDING PERSONAL DATA MANAGEMENT". Frontline Marketing, Management and Economics Journal 04, nr 12 (1.12.2024): 84–106. https://doi.org/10.37547/marketing-fmmej-04-12-07.
Pełny tekst źródłaRahman, Ashequr, Asif Iqbal, Emon Ahmed, Tanvirahmedshuvo . i Md Risalat Hossain Ontor. "PRIVACY-PRESERVING MACHINE LEARNING: TECHNIQUES, CHALLENGES, AND FUTURE DIRECTIONS IN SAFEGUARDING PERSONAL DATA MANAGEMENT". International journal of business and management sciences 04, nr 12 (15.12.2024): 18–32. https://doi.org/10.55640/ijbms-04-12-03.
Pełny tekst źródłaZhang, Lei, i Lina Ge. "A clustering-based differential privacy protection algorithm for weighted social networks". Mathematical Biosciences and Engineering 21, nr 3 (2024): 3755–33. http://dx.doi.org/10.3934/mbe.2024166.
Pełny tekst źródłaYeow, Sin-Qian, i Kok-Why Ng. "Neural Network Based Data Encryption: A Comparison Study among DES, AES, and HE Techniques". JOIV : International Journal on Informatics Visualization 7, nr 3-2 (30.11.2023): 2086. http://dx.doi.org/10.30630/joiv.7.3-2.2336.
Pełny tekst źródła