Gotowa bibliografia na temat „COMPUTATIONAL MODELLING OF RAIL WHEEL”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „COMPUTATIONAL MODELLING OF RAIL WHEEL”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "COMPUTATIONAL MODELLING OF RAIL WHEEL"

1

Fajdiga, Gorazd, Matjaž Šraml, and Janez Kramar. "Modelling of Rolling Contact Fatigue of Rails." Key Engineering Materials 324-325 (November 2006): 987–90. http://dx.doi.org/10.4028/www.scientific.net/kem.324-325.987.

Pełny tekst źródła
Streszczenie:
Rail dark spot defect, also termed as squat failure or shelling, is a rolling contact fatigue failure which occurs frequently on the high speed traffic railway rails. The main goal of this study is to develop a computational model for simulation of the squat phenomena on rails in rail-wheel contact. The proposed computational model consists of two parts: (i) Contact Fatigue Crack Initiation (CFCI) and (ii) Contact Fatigue Crack Propagation (CFCP). The results of proposed unified model enable a computational prediction of a probable number of loading cycles that a wheel-rail system can sustain
Style APA, Harvard, Vancouver, ISO itp.
2

An, Boyang, Jing Wen, Panjie Wang, Ping Wang, Rong Chen, and Jingmang Xu. "Numerical Investigation into the Effect of Geometric Gap Idealisation on Wheel-Rail Rolling Contact in Presence of Yaw Angle." Mathematical Problems in Engineering 2019 (April 2, 2019): 1–14. http://dx.doi.org/10.1155/2019/9895267.

Pełny tekst źródła
Streszczenie:
For a fast calculation of vehicle-track dynamics and wheel-rail contact mechanics, wheel-rail contact geometric gap is usually idealised in elliptic or nonelliptic form. These two idealisations deviate from the actual one if the lateral combined curvature within the contact patch is not constant or the yaw angle of wheelset exists. The influence of these idealisations on contact solution has not yet been deeply understood, and thus the accuracy of simplified contact modelling applied to vehicle-track dynamics and wheel-rail contact mechanics remains uncertain. This paper presents a numerical m
Style APA, Harvard, Vancouver, ISO itp.
3

Xu, Lei, Qiang Zhang, Zhiwu Yu, and Zhihui Zhu. "Vehicle–track interaction with consideration of rail irregularities at three-dimensional space." Journal of Vibration and Control 26, no. 15-16 (2020): 1228–40. http://dx.doi.org/10.1177/1077546319894816.

Pełny tekst źródła
Streszczenie:
Modelling of vehicle–track interaction has long been a hot and interesting topic. In multibody dynamics based on force-equilibrium methods, Hertzian contact and creep theories have been applied in vehicle–track model constructions. In another aspect, the complementarity-based methods have also been widely used in establishing vehicle–track interaction, but still having drawbacks on characterization of wheel–rail contact geometry/creepage in three-dimensional space. In this study, we draw essences from methodologies of refined wheel–rail coupling models and energy-variational principle, and a m
Style APA, Harvard, Vancouver, ISO itp.
4

Dižo, Ján, Miroslav Blatnický, Jozef Harušinec, and Andrej Suchánek. "Assessment of Dynamics of a Rail Vehicle in Terms of Running Properties While Moving on a Real Track Model." Symmetry 14, no. 3 (2022): 536. http://dx.doi.org/10.3390/sym14030536.

Pełny tekst źródła
Streszczenie:
Simulation computations represent a very effective tool for investigating operational characteristics and behaviours of vehicles without having a real product. The rail vehicles sector is typical, in that simulation computations including multibody modelling of individual vehicles (i.e., wagons) as well as entire trainsets are widely used. In the case of designing rail vehicles, running safety and ride comfort are two of the most important assessment areas. The presented work is focused on the research of the dynamical effects of a rail vehicle while running on a railway track created in a com
Style APA, Harvard, Vancouver, ISO itp.
5

Baeza, L., F. J. Fuenmayor, J. Carballeira, and A. Roda. "Influence of the wheel-rail contact instationary process on contact parameters." Journal of Strain Analysis for Engineering Design 42, no. 5 (2007): 377–87. http://dx.doi.org/10.1243/03093247jsa247.

Pełny tekst źródła
Streszczenie:
The rapid convergence of the tangential rolling contact parameters to their stationary values, combined with the high computational cost associated with calculations using instationary models, has meant that stationary models are usually employed in railway dynamics. However, the validity of stationary models when the applied contact conditions are subjected to rapid changes has not been sufficiently investigated. With the objective of deducing the effects of the evolution of the instationary process on the contact parameters, the tangential contact problem is solved for a set of reference con
Style APA, Harvard, Vancouver, ISO itp.
6

Zhao, Jing, Edwin A. H. Vollebregt, and Cornelis W. Oosterlee. "EXTENDING THE BEM FOR ELASTIC CONTACT PROBLEMS BEYOND THE HALF-SPACE APPROACH." Mathematical Modelling and Analysis 21, no. 1 (2016): 119–41. http://dx.doi.org/10.3846/13926292.2016.1138418.

Pełny tekst źródła
Streszczenie:
The boundary element method (BEM) is widely used in fast numerical solvers for concentrated elastic contact problems arising from the wheel-rail contact in the railway industry. In this paper we extend the range of applicability of BEM by computing the influence coefficients (ICs) numerically. These ICs represent the Green’s function of the problem, i.e. the surface deformation due to unit loads. They are not analytically available when the half-space is invalid, for instance in conformal contact. An elastic model is proposed to compute these ICs numerically, by the finite element method (FEM)
Style APA, Harvard, Vancouver, ISO itp.
7

An, Boyang, Daolin Ma, Ping Wang, et al. "Assessing the fast non-Hertzian methods based on the simulation of wheel–rail rolling contact and wear distribution." Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit 234, no. 5 (2019): 524–37. http://dx.doi.org/10.1177/0954409719848592.

Pełny tekst źródła
Streszczenie:
This paper aims at assessing several fast non-Hertzian methods, coupled with two wear models, based on the wheel–rail rolling contact and wear prediction. Four contact models, namely Kik-Piotrowski's method, Linder's method, Ayasse-Chollet's STRIPES algorithm and Sichani's ANALYN algorithm are employed for comparing the normal contact. For their tangential modelling, two tangential algorithms, i.e. FASTSIM and FaStrip, are used. Two commonly used wear models, namely the Archard (extended at the KTH Royal Institute of Technology) and USFD (developed by the University of Sheffield based on T-gam
Style APA, Harvard, Vancouver, ISO itp.
8

Ramalho, A. "Wear modelling in rail–wheel contact." Wear 330-331 (May 2015): 524–32. http://dx.doi.org/10.1016/j.wear.2015.01.067.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Wu, Qing, Maksym Spiryagin, Peter Wolfs, and Colin Cole. "Traction modelling in train dynamics." Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit 233, no. 4 (2018): 382–95. http://dx.doi.org/10.1177/0954409718795496.

Pełny tekst źródła
Streszczenie:
This paper presents five locomotive traction models for the purpose of train dynamics simulations, such as longitudinal train dynamics simulations. Model 1 is a look-up table model with a constant force limit to represent the adhesion limit without modelling the wheel–rail contact. Model 2 is improved from Model 1 by empirically simulating locomotive sanding systems, variable track conditions and traction force reduction due to curving. Model 3 and Model 4 have included modelling of the wheel–rail contact and traction control. Model 3 uses a two-dimensional locomotive model while Model 4 uses
Style APA, Harvard, Vancouver, ISO itp.
10

Tao, Gongquan, Zefeng Wen, Xin Zhao, and Xuesong Jin. "Effects of wheel–rail contact modelling on wheel wear simulation." Wear 366-367 (November 2016): 146–56. http://dx.doi.org/10.1016/j.wear.2016.05.010.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Więcej źródeł
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!