Artykuły w czasopismach na temat „Computational Nano Science”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Computational Nano Science”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Ghafooriadl, Naser, Sohrab Asadzadeh Olghi, and Ali Moghani. "Computational Algorithms for Topological Cycle Indices of Tert-Butyl Alcohol by Computational Science." Defect and Diffusion Forum 312-315 (April 2011): 39–44. http://dx.doi.org/10.4028/www.scientific.net/ddf.312-315.39.
Pełny tekst źródłaKisała, Joanna, Kinga I. Hęclik, Krzysztof Pogocki, and Dariusz Pogocki. "Essentials and Perspectives of Computational Modelling Assistance for CNS-oriented Nanoparticle-based Drug Delivery Systems." Current Medicinal Chemistry 25, no. 42 (2019): 5894–913. http://dx.doi.org/10.2174/0929867325666180517095742.
Pełny tekst źródłaGrujicic, M., JS Snipes, and S. Ramaswami. "Multi-scale computational analysis of the nano-indentation and nano-scratch testing of Kevlar® 49 single fibers." Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 232, no. 6 (2016): 495–513. http://dx.doi.org/10.1177/1464420716635851.
Pełny tekst źródłaAlavinasab, A., R. Jha, G. Ahmadi, C. Cetinkaya, and I. Sokolov. "Computational modeling of nano-structured glass fibers." Computational Materials Science 44, no. 2 (2008): 622–27. http://dx.doi.org/10.1016/j.commatsci.2008.05.004.
Pełny tekst źródłaLAMBA, V. K., O. P. GARG, and D. ENGLES. "SCATTERING IN NANO-FILMS." Journal of Multiscale Modelling 04, no. 02 (2012): 1250007. http://dx.doi.org/10.1142/s1756973712500072.
Pełny tekst źródłaChong, Ken P. "Nano Science and Engineering in Solid Mechanics." Acta Mechanica Solida Sinica 21, no. 2 (2008): 95–103. http://dx.doi.org/10.1007/s10338-008-0812-7.
Pełny tekst źródłaDubey, A., G. Sharma, C. Mavroidis, M. S. Tomassone, K. Nikitczuk, and M. L. Yarmush. "Computational Studies of Viral Protein Nano-Actuators." Journal of Computational and Theoretical Nanoscience 1, no. 1 (2004): 18–28. http://dx.doi.org/10.1166/jctn.2003.003.
Pełny tekst źródłaHajder, Piotr, and Łukasz Rauch. "Moving Multiscale Modelling to the Edge: Benchmarking and Load Optimization for Cellular Automata on Low Power Microcomputers." Processes 9, no. 12 (2021): 2225. http://dx.doi.org/10.3390/pr9122225.
Pełny tekst źródłaKhitun, Alexander, and Kang L. Wang. "Nano scale computational architectures with Spin Wave Bus." Superlattices and Microstructures 38, no. 3 (2005): 184–200. http://dx.doi.org/10.1016/j.spmi.2005.07.001.
Pełny tekst źródłaSankaran, Krishnaswamy. "Recent Trends in Computational Electromagnetics for Defence Applications." Defence Science Journal 69, no. 1 (2019): 65–73. http://dx.doi.org/10.14429/dsj.69.13275.
Pełny tekst źródłaLone, Baliram. "Computational Nanotechnology in Biomedical Nanometrics and Nano-Materials." Journal of Computational and Theoretical Nanoscience 6, no. 10 (2009): 2146–51. http://dx.doi.org/10.1166/jctn.2009.1269.
Pełny tekst źródłaKara, Abdelkader, Sébastien Vizzini, Cristel Leandri, et al. "Silicon nano-ribbons on Ag(110): a computational investigation." Journal of Physics: Condensed Matter 22, no. 4 (2010): 045004. http://dx.doi.org/10.1088/0953-8984/22/4/045004.
Pełny tekst źródłaLee, Chang-Chun, Nien-Ti Tsou, and Taek-Soo Kim. "Preface: Nano/Micro Structures in Application of Computational Mechanics." Computer Modeling in Engineering & Sciences 120, no. 2 (2019): 235–37. http://dx.doi.org/10.32604/cmes.2019.07807.
Pełny tekst źródłaKumar, Ranvijay. "Analysis and Visualisation of Research Trends in Nano Material: A General Review." Turkish Journal of Computer and Mathematics Education (TURCOMAT) 12, no. 2 (2021): 2959–64. http://dx.doi.org/10.17762/turcomat.v12i2.2335.
Pełny tekst źródłaAl-Rabadi, Anas N. "Parallel processing via carbon field emission-based controlled-switching of regular bijective nano systolic networks, Part II." International Journal of Intelligent Computing and Cybernetics 9, no. 4 (2016): 369–93. http://dx.doi.org/10.1108/ijicc-11-2015-0037.
Pełny tekst źródłaBrunacci, Nadia, Axel T. Neffe, Christian Wischke, Toufik Naolou, Ulrich Nöchel, and Andreas Lendlein. "Oligodepsipeptide (nano)carriers: Computational design and analysis of enhanced drug loading." Journal of Controlled Release 301 (May 2019): 146–56. http://dx.doi.org/10.1016/j.jconrel.2019.03.004.
Pełny tekst źródłaZhuang, Xiaoying, Binh Huy Nguyen, Subbiah Srivilliputtur Nanthakumar, Thai Quoc Tran, Naif Alajlan, and Timon Rabczuk. "Computational Modeling of Flexoelectricity—A Review." Energies 13, no. 6 (2020): 1326. http://dx.doi.org/10.3390/en13061326.
Pełny tekst źródłaKumar, Raman. "Analysis and Visualisation of Research Trends in Carbon Nano Tubes: A General Review." Turkish Journal of Computer and Mathematics Education (TURCOMAT) 12, no. 2 (2021): 2765–70. http://dx.doi.org/10.17762/turcomat.v12i2.2305.
Pełny tekst źródłaMoleinia, Zara, and David Bahr. "Multi-Scale Analyses and Modeling of Metallic Nano-Layers." Materials 14, no. 2 (2021): 450. http://dx.doi.org/10.3390/ma14020450.
Pełny tekst źródłaHeidari, Alireza, and Victoria Peterson. "An encyclopedic review on stereotactic hypofrac tionated radiotherapy, re-irradiation, and cancer genome research." International Journal of Advanced Chemistry 8, no. 1 (2020): 59. http://dx.doi.org/10.14419/ijac.v8i1.30501.
Pełny tekst źródłaSharma, G., M. Badescu, A. Dubey, C. Mavroidis, S. M. Tomassone, and M. L. Yarmush. "Kinematics and Workspace Analysis of Protein Based Nano-Actuators." Journal of Mechanical Design 127, no. 4 (2005): 718–27. http://dx.doi.org/10.1115/1.1900751.
Pełny tekst źródłaWANG, LIFENG, and HAIYAN HU. "SIZE EFFECTS ON EFFECTIVE YOUNG'S MODULUS OF NANO CRYSTAL COPPER WIRES." International Journal of Computational Methods 02, no. 03 (2005): 315–26. http://dx.doi.org/10.1142/s0219876205000508.
Pełny tekst źródłaYang, Bo, Lanxing Gao, Miaoxuan Xue, et al. "Experimental and Simulation Research on the Preparation of Carbon Nano-Materials by Chemical Vapor Deposition." Materials 14, no. 23 (2021): 7356. http://dx.doi.org/10.3390/ma14237356.
Pełny tekst źródłaKwak, Taejin, and Dongchoul Kim. "Controlling Equilibrium Morphologies of Bimetallic Nanostructures Using Thermal Dewetting via Phase-Field Modeling." Materials 14, no. 21 (2021): 6697. http://dx.doi.org/10.3390/ma14216697.
Pełny tekst źródłaJamali, Y., M. E. Foulaadvand, and H. Rafii-Tabar. "Computational Modeling of the Collective Stochastic Motion of Kinesin Nano Motors." Journal of Computational and Theoretical Nanoscience 7, no. 1 (2010): 146–52. http://dx.doi.org/10.1166/jctn.2010.1338.
Pełny tekst źródłaPandey, Anoop Kumar, Vijay Singh, and Apoorva Dwivedi. "Quantum chemical calculations of a novel Specie – Boron Nano Bucket (B16) and the interaction of its complex (B15-Li) with drug Resorcinol." Journal of Computational Methods in Sciences and Engineering 20, no. 3 (2020): 1017–28. http://dx.doi.org/10.3233/jcm-200032.
Pełny tekst źródłaAlwawi, Firas A., Mohammed Z. Swalmeh, and Abdulkareem Saleh Hamarsheh. "Computational Simulation and Parametric Analysis of the Effectiveness of Ternary Nano-composites in Improving Magneto-Micropolar Liquid Heat Transport Performance." Symmetry 15, no. 2 (2023): 429. http://dx.doi.org/10.3390/sym15020429.
Pełny tekst źródłaTian, Wanpeng, and Yonggang Xiong. "Study on Mechanism for Preventing Thrombus Formation by Nano-Biological Catheter Pump." Nanoscience and Nanotechnology Letters 12, no. 1 (2020): 48–53. http://dx.doi.org/10.1166/nnl.2020.3082.
Pełny tekst źródłaBaid, Harsh, Frank Abdi, and Dade Huang. "INTEGRATED COMPUTATIONAL MATERIAL SCIENCE ENGINEERING LIFING MODEL OF CMC COUPONS USING NANO-MICROMECHANICS BASED MULTISCALE PROGRESSIVE FAILURE ANALYSIS." International Journal for Multiscale Computational Engineering 19, no. 6 (2021): 67–116. http://dx.doi.org/10.1615/intjmultcompeng.2021041433.
Pełny tekst źródłaKumar, Deepak, Mohammad Zunaid, and Samsher Gautam. "Performance Evaluation of Thermal Attributes in Impinging Jet Heat Sink using Airfoil Pillars with and without Nano Fluid." Tobacco Regulatory Science 7, no. 5 (2021): 2808–20. http://dx.doi.org/10.18001/trs.7.5.1.49.
Pełny tekst źródłaKammer, D., and P. W. Voorhees. "Analysis of Complex Microstructures: Serial Sectioning and Phase-Field Simulations." MRS Bulletin 33, no. 6 (2008): 603–10. http://dx.doi.org/10.1557/mrs2008.125.
Pełny tekst źródłaCandreva, Angela, Giuseppe Di Maio, Giovanna Palermo, Alexa Guglielmelli, Giuseppe Strangi, and Massimo La Deda. "Solvent-Dispersible Nanostructured MIMI: An Experimental and Computational Study." Applied Sciences 13, no. 5 (2023): 2982. http://dx.doi.org/10.3390/app13052982.
Pełny tekst źródłaDutta, Sutapa, Stefano Corni, and Giorgia Brancolini. "Atomistic Simulations of Functionalized Nano-Materials for Biosensors Applications." International Journal of Molecular Sciences 23, no. 3 (2022): 1484. http://dx.doi.org/10.3390/ijms23031484.
Pełny tekst źródłaGeorgantzinos, Stelios K. "Multiscale Simulation of Composite Structures: Damage Assessment, Mechanical Analysis and Prediction." Materials 15, no. 18 (2022): 6494. http://dx.doi.org/10.3390/ma15186494.
Pełny tekst źródłaBuglak, Andrey A., Anatoly V. Zherdev, and Boris B. Dzantiev. "Nano-(Q)SAR for Cytotoxicity Prediction of Engineered Nanomaterials." Molecules 24, no. 24 (2019): 4537. http://dx.doi.org/10.3390/molecules24244537.
Pełny tekst źródłaSHI, X. Q., J. P. PICKERING, and C. K. WONG. "ATOMIC FORCE MICROSCOPE (AFM)-BASED DIGITAL IMAGE SPECKLE CORRELATION (DiSC) TECHNIQUE FOR THE MEASUREMENT OF DEFORMATION IN NANOSCALE." International Journal of Nanoscience 03, no. 06 (2004): 789–95. http://dx.doi.org/10.1142/s0219581x04002681.
Pełny tekst źródłaAlbasri, Omar Waleed Abduljaleel, Palanirajan Vijayaraj Kumar, and Mogana Sundari Rajagopal. "Development of Computational In Silico Model for Nano Lipid Carrier Formulation of Curcumin." Molecules 28, no. 4 (2023): 1833. http://dx.doi.org/10.3390/molecules28041833.
Pełny tekst źródłaNikitin, Viktor, Vincent De Andrade, Azat Slyamov, et al. "Distributed Optimization for Nonrigid Nano-Tomography." IEEE Transactions on Computational Imaging 7 (2021): 272–87. http://dx.doi.org/10.1109/tci.2021.3060915.
Pełny tekst źródłaLongaretti, Massimo, Giovambattista Marino, Bice Chini, Joseph W. Jerome, and Riccardo Sacco. "Computational Models in Nano-Bioelectronics: Simulation of Ionic Transport in Voltage Operated Channels." Journal of Nanoscience and Nanotechnology 8, no. 7 (2008): 3686–94. http://dx.doi.org/10.1166/jnn.2008.005.
Pełny tekst źródłaLongaretti, Massimo, Giovambattista Marino, Bice Chini, Joseph W. Jerome, and Riccardo Sacco. "Computational Models in Nano-Bioelectronics: Simulation of Ionic Transport in Voltage Operated Channels." Journal of Nanoscience and Nanotechnology 8, no. 7 (2008): 3686–94. http://dx.doi.org/10.1166/jnn.2008.18334.
Pełny tekst źródłaTrinh, Tung X., and Jongwoon Kim. "Status Quo in Data Availability and Predictive Models of Nano-Mixture Toxicity." Nanomaterials 11, no. 1 (2021): 124. http://dx.doi.org/10.3390/nano11010124.
Pełny tekst źródłaXIAO, SHAOPING, and WEIXUAN YANG. "A NANOSCALE MESHFREE PARTICLE METHOD WITH THE IMPLEMENTATION OF THE QUASICONTINUUM METHOD." International Journal of Computational Methods 02, no. 03 (2005): 293–313. http://dx.doi.org/10.1142/s0219876205000533.
Pełny tekst źródłaYang, Jing, Zhixiang Yin, Zhen Tang, Xue Pang, Jianzhong Cui, and Congcong Liu. "Visual solution to minimum spanning tree problem based on DNA origami." Materials Express 11, no. 10 (2021): 1700–1706. http://dx.doi.org/10.1166/mex.2021.2081.
Pełny tekst źródłaKumar, Lalit, and Dushyant Kumar Singh. "Hardware Response and Performance Analysis of Multicore Computing Systems for Deep Learning Algorithms." Cybernetics and Information Technologies 22, no. 3 (2022): 68–81. http://dx.doi.org/10.2478/cait-2022-0028.
Pełny tekst źródłaRay, Asok K., and M. N. Huda. "Silicon-Carbide Nano-Clusters: A Pathway to Future Nano-Electronics." Journal of Computational and Theoretical Nanoscience 3, no. 3 (2006): 315–41. http://dx.doi.org/10.1166/jctn.2006.3014.
Pełny tekst źródłaSouri, Mohammad, Mohsen Chiani, Ali Farhangi, et al. "Anti-COVID-19 Nanomaterials: Directions to Improve Prevention, Diagnosis, and Treatment." Nanomaterials 12, no. 5 (2022): 783. http://dx.doi.org/10.3390/nano12050783.
Pełny tekst źródłaTripathi, Jayati, B. Vasu, and O. Anwar Bég. "Computational simulations of hybrid mediated nano- hemodynamics (Ag-Au/Blood) through an irregular symmetric stenosis." Computers in Biology and Medicine 130 (March 2021): 104213. http://dx.doi.org/10.1016/j.compbiomed.2021.104213.
Pełny tekst źródłaJin, Shaoming, Zhongyao Du, Huiyuan Guo, Hao Zhang, Fazheng Ren, and Pengjie Wang. "Novel Targeted Anti-Tumor Nanoparticles Developed from Folic Acid-Modified 2-Deoxyglucose." International Journal of Molecular Sciences 20, no. 3 (2019): 697. http://dx.doi.org/10.3390/ijms20030697.
Pełny tekst źródłaEt. al., Svetlana A. Ulyanova. "Assessing the Factor Influence on Patent Activity in Mining and Metallurgical Industry (e.g. Nano Products)." Turkish Journal of Computer and Mathematics Education (TURCOMAT) 12, no. 3 (2021): 5768–75. http://dx.doi.org/10.17762/turcomat.v12i3.2253.
Pełny tekst źródłaSaloni, Saloni, Prabhat Ranjan, and Tanmoy Chakraborty. "A computational study of ZnFeX2 (X = S, Se, Te) Nano-clusters having photovoltaic applications." Materials Science in Semiconductor Processing 164 (September 2023): 107608. http://dx.doi.org/10.1016/j.mssp.2023.107608.
Pełny tekst źródła