Artykuły w czasopismach na temat „Computational Reaction Kinetics”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Computational Reaction Kinetics”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Christophorov, L. N. "Indirect Evidences of Conformational Regulation in Protein Reactions: How Much Can Be Learnt?" Ukrainian Journal of Physics 57, no. 7 (2012): 746. http://dx.doi.org/10.15407/ujpe57.7.746.
Pełny tekst źródłaKönig, Matthias. "cy3sabiork: A Cytoscape app for visualizing kinetic data from SABIO-RK." F1000Research 5 (July 18, 2016): 1736. http://dx.doi.org/10.12688/f1000research.9211.1.
Pełny tekst źródłaShishanov, Mikhail V., Ilya D. Tsvetkov, Dmitry V. Yashunin, et al. "KINETICS OF ANILINE-FORMALDEHYDE INTERACTION UNDER CONDITIONS OF HOMOGENEOUS CATALYSIS." ChemChemTech 67, no. 11 (2024): 55–62. https://doi.org/10.6060/ivkkt.20246711.7030.
Pełny tekst źródłaMenshutina, Natalia V., Igor V. Lebedev, Evgeniy A. Lebedev, Ratmir R. Dashkin, Mikhail V. Shishanov, and Maxim L. Burdeyniy. "STUDY AND MODELING 4,4'-DIAMINODIPHENYLMETHANE SYNTHESIS." IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII KHIMIYA KHIMICHESKAYA TEKHNOLOGIYA 64, no. 4 (2021): 100–103. http://dx.doi.org/10.6060/ivkkt.20216404.6314.
Pełny tekst źródłaMenshutina, Natalia, Igor Lebedev, Evgeniy Lebedev, et al. "Complex Modelling and Design of Catalytic Reactors Using Multiscale Approach—Part 2: Catalytic Reactions Modelling with Cellular Automata Approach." Computation 8, no. 4 (2020): 87. http://dx.doi.org/10.3390/computation8040087.
Pełny tekst źródłaKe, Wei, Guang-Jin Chen, and Daoyi Chen. "Methane–propane hydrate formation and memory effect study with a reaction kinetics model." Progress in Reaction Kinetics and Mechanism 45 (January 2020): 146867832090162. http://dx.doi.org/10.1177/1468678320901622.
Pełny tekst źródłaRosero Chicaíza, David Camilo, and Bibian A. Hoyos. "Reaction kinetic parameters for a distributed model of transport and reaction in Pd/Rh/CeZrO three-way catalytic converters." DYNA 86, no. 210 (2019): 216–23. http://dx.doi.org/10.15446/dyna.v86n210.78596.
Pełny tekst źródłaYen, Shih-Wei, Wei-Hsin Chen, Jo-Shu Chang, Chun-Fong Eng, Salman Raza Naqvi, and Pau Loke Show. "Torrefaction Thermogravimetric Analysis and Kinetics of Sorghum Distilled Residue for Sustainable Fuel Production." Sustainability 13, no. 8 (2021): 4246. http://dx.doi.org/10.3390/su13084246.
Pełny tekst źródłaHuang, Sijia, Kangmin Kim, Grant M. Musgrave, et al. "Determining Michael acceptor reactivity from kinetic, mechanistic, and computational analysis for the base-catalyzed thiol-Michael reaction." Polymer Chemistry 12, no. 25 (2021): 3619–28. http://dx.doi.org/10.1039/d1py00363a.
Pełny tekst źródłaVarela, J. A., S. A. Vázquez, and E. Martínez-Núñez. "An automated method to find reaction mechanisms and solve the kinetics in organometallic catalysis." Chemical Science 8, no. 5 (2017): 3843–51. http://dx.doi.org/10.1039/c7sc00549k.
Pełny tekst źródłaPark, Jongmin, Hyo Seok Kim, Won Bo Lee, and Myung-June Park. "Trends and Outlook of Computational Chemistry and Microkinetic Modeling for Catalytic Synthesis of Methanol and DME." Catalysts 10, no. 6 (2020): 655. http://dx.doi.org/10.3390/catal10060655.
Pełny tekst źródłaGajewska, Magdalena, and Katarzyna Skrzypiec. "Kinetics of nitrogen removal processes in constructed wetlands." E3S Web of Conferences 26 (2018): 00001. http://dx.doi.org/10.1051/e3sconf/20182600001.
Pełny tekst źródłaShibata, Masao Suzuki, Yu Chen, Alexandra Zagalskaya, et al. "Impact of Double Layer on Electrochemical Kinetics via Bottom up Multiscale Modeling Approach." ECS Meeting Abstracts MA2024-02, no. 61 (2024): 4090. https://doi.org/10.1149/ma2024-02614090mtgabs.
Pełny tekst źródłaSaraee, Hossein S., Kevin J. Hughes, and Mohamed Pourkashanian. "Construction of a Small-Sized Simplified Chemical Kinetics Model for the Simulation of n-Propylcyclohexane Combustion Properties." Energies 17, no. 5 (2024): 1103. http://dx.doi.org/10.3390/en17051103.
Pełny tekst źródłaIlyin, Daniil V., William A. Goddard, Julius J. Oppenheim, and Tao Cheng. "First-principles–based reaction kinetics from reactive molecular dynamics simulations: Application to hydrogen peroxide decomposition." Proceedings of the National Academy of Sciences 116, no. 37 (2018): 18202–8. http://dx.doi.org/10.1073/pnas.1701383115.
Pełny tekst źródłaLording, William J., Alan D. Payne, Tory N. Cayzer, Michael S. Sherburn, and Michael N. Paddon-Row. "A Combined Computational–Experimental Study of the Kinetics of Intramolecular Diels–Alder Reactions in a Series of 1,3,8-Nonatrienes." Australian Journal of Chemistry 68, no. 2 (2015): 230. http://dx.doi.org/10.1071/ch14430.
Pełny tekst źródłaDias Vicentini, Eduardo, Ana P. de Lima Batista, and Antonio G. Sampaio de Oliveira-Filho. "Computational mechanistic investigation of the Fe + CO2 → FeO + CO reaction." Physical Chemistry Chemical Physics 22, no. 29 (2020): 16943–48. http://dx.doi.org/10.1039/d0cp00479k.
Pełny tekst źródłaYu, Chunkan, Felipe Minuzzi, and Ulrich Maas. "Numerical Simulation of Turbulent Flames based on a Hybrid RANS/Transported-PDF Method and REDIM Method." Eurasian Chemico-Technological Journal 20, no. 1 (2018): 23. http://dx.doi.org/10.18321/ectj705.
Pełny tekst źródłaWacławek, Stanisław. "Do We Still Need a Laboratory to Study Advanced Oxidation Processes? A Review of the Modelling of Radical Reactions used for Water Treatment." Ecological Chemistry and Engineering S 28, no. 1 (2021): 11–28. http://dx.doi.org/10.2478/eces-2021-0002.
Pełny tekst źródłaRaymond, K. W., and Y. Pocker. "Bistability and the ordered bimolecular mechanism." Biochemistry and Cell Biology 69, no. 9 (1991): 661–64. http://dx.doi.org/10.1139/o91-098.
Pełny tekst źródłaLi, Han-Jung, Hui-Lung Chen, Jee-Gong Chang, Hsin-Tsung Chen, Shiuan-Yau Wu, and Shin-Pon Ju. "Computational Study on Reaction Mechanisms and Kinetics of Diazocarbene Radical Reaction with NO." Journal of Physical Chemistry A 114, no. 18 (2010): 5894–901. http://dx.doi.org/10.1021/jp1008016.
Pełny tekst źródłaKočí, V., M. Keppert, and R. Černý. "Reaction kinetics of basaltic elements in cementitious matrices: theoretical considerations." Journal of Physics: Conference Series 2628, no. 1 (2023): 012011. http://dx.doi.org/10.1088/1742-6596/2628/1/012011.
Pełny tekst źródłaVenier, Cesar M., Erick Torres, Gastón G. Fouga, Rosa A. Rodriguez, Germán Mazza, and Andres Reyes Urrutia. "Computational Modeling of Biomass Fast Pyrolysis in Fluidized Beds with Eulerian Multifluid Approach." Fluids 9, no. 12 (2024): 301. https://doi.org/10.3390/fluids9120301.
Pełny tekst źródłaYang, Shu, San Kiang, Parham Farzan, and Marianthi Ierapetritou. "Optimization of Reaction Selectivity Using CFD-Based Compartmental Modeling and Surrogate-Based Optimization." Processes 7, no. 1 (2018): 9. http://dx.doi.org/10.3390/pr7010009.
Pełny tekst źródłaAkanni, Olatokunbo O., Hisham A. Nasr-El-Din, and Deepak Gusain. "A Computational Navier-Stokes Fluid-Dynamics-Simulation Study of Wormhole Propagation in Carbonate-Matrix Acidizing and Analysis of Factors Influencing the Dissolution Process." SPE Journal 22, no. 06 (2017): 2049–66. http://dx.doi.org/10.2118/187962-pa.
Pełny tekst źródłaMoghazy, Yasmen M., Nagwa MM Hamada, Magda F. Fathalla, Yasser R. Elmarassi, Ezzat A. Hamed, and Mohamed A. El-Atawy. "Understanding the reaction mechanism of the regioselective piperidinolysis of aryl 1-(2,4-dinitronaphthyl) ethers in DMSO: Kinetic and DFT studies." Progress in Reaction Kinetics and Mechanism 46 (January 2021): 146867832110274. http://dx.doi.org/10.1177/14686783211027446.
Pełny tekst źródłaPoley, Isabela M., and Leandro S. Oliveira. "CFD Modeling and Simulation of Transesterification Reactions of Vegetable Oils with an Alcohol in Baffled Stirred Tank Reactors." Applied Mechanics and Materials 390 (August 2013): 86–90. http://dx.doi.org/10.4028/www.scientific.net/amm.390.86.
Pełny tekst źródłaNissen, Anna, Zhouyuan Zhu, Anthony Kovscek, Louis Castanier, and Margot Gerritsen. "Upscaling Kinetics for Field-Scale In-Situ-Combustion Simulation." SPE Reservoir Evaluation & Engineering 18, no. 02 (2015): 158–70. http://dx.doi.org/10.2118/174093-pa.
Pełny tekst źródłaCerri, G., V. Michelassi, S. Monacchia, and S. Pica. "Kinetic combustion neural modelling integrated into computational fluid dynamics." Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 217, no. 2 (2003): 185–92. http://dx.doi.org/10.1243/09576500360611218.
Pełny tekst źródłaBerkemeier, Thomas, Matteo Krüger, Aryeh Feinberg, Marcel Müller, Ulrich Pöschl, and Ulrich K. Krieger. "Accelerating models for multiphase chemical kinetics through machine learning with polynomial chaos expansion and neural networks." Geoscientific Model Development 16, no. 7 (2023): 2037–54. http://dx.doi.org/10.5194/gmd-16-2037-2023.
Pełny tekst źródłaSimka, H., M. Hierlemann, M. Utz, and K. F. Jensen. "Computational Chemistry Predictions of Kinetics and Major Reaction Pathways for Germane Gas‐Phase Reactions." Journal of The Electrochemical Society 143, no. 8 (1996): 2646–54. http://dx.doi.org/10.1149/1.1837063.
Pełny tekst źródłaHuang, Xue Zheng, and Hai Ling Chen. "Development of the Simulation Software on the Complex Reaction Kinetics." Advanced Materials Research 634-638 (January 2013): 7–10. http://dx.doi.org/10.4028/www.scientific.net/amr.634-638.7.
Pełny tekst źródłaBenjamin, Ilan. "Chemical Reaction Dynamics at Liquid Interfaces: A Computational Approach." Progress in Reaction Kinetics and Mechanism 27, no. 2 (2002): 87–126. http://dx.doi.org/10.3184/007967402103165360.
Pełny tekst źródłaXue, Jingwen, Fangfang Ma, Jonas Elm, Jingwen Chen, and Hong-Bin Xie. "Atmospheric oxidation mechanism and kinetics of indole initiated by ●OH and ●Cl: a computational study." Atmospheric Chemistry and Physics 22, no. 17 (2022): 11543–55. http://dx.doi.org/10.5194/acp-22-11543-2022.
Pełny tekst źródłaLakin, Matthew R., Simon Youssef, Luca Cardelli, and Andrew Phillips. "Abstractions for DNA circuit design." Journal of The Royal Society Interface 9, no. 68 (2011): 470–86. http://dx.doi.org/10.1098/rsif.2011.0343.
Pełny tekst źródłaAi, Jiali, Chi Zhai, and Wei Sun. "Study on the Formation of Complex Chemical Waveforms by Different Computational Methods." Processes 8, no. 4 (2020): 393. http://dx.doi.org/10.3390/pr8040393.
Pełny tekst źródłaGaidamauskaitė, E., and R. Baronas. "A Comparison of Finite Difference Schemes for Computational Modelling of Biosensors." Nonlinear Analysis: Modelling and Control 12, no. 3 (2007): 359–69. http://dx.doi.org/10.15388/na.2007.12.3.14697.
Pełny tekst źródłaSHIH, ANGELA, CALINA CIOBANU, and FU-MING TAO. "THEORETICAL MECHANISMS AND KINETICS FOR THE REACTION OF DIMETHYL SULFIDE AND OZONE IN WATER VAPOR." Journal of Theoretical and Computational Chemistry 04, no. 04 (2005): 1101–17. http://dx.doi.org/10.1142/s0219633605001982.
Pełny tekst źródłaEikerling, Michael, and Xinwei Zhu. "(Keynote) Deciphering Electrocatalytic Reactions with Theory and Computation: The Case of CO2 Reduction." ECS Meeting Abstracts MA2022-01, no. 49 (2022): 2076. http://dx.doi.org/10.1149/ma2022-01492076mtgabs.
Pełny tekst źródłaBaiano, Carmen, Jacopo Lupi, Nicola Tasinato, Cristina Puzzarini, and Vincenzo Barone. "The Role of State-of-the-Art Quantum-Chemical Calculations in Astrochemistry: Formation Route and Spectroscopy of Ethanimine as a Paradigmatic Case." Molecules 25, no. 12 (2020): 2873. http://dx.doi.org/10.3390/molecules25122873.
Pełny tekst źródłaZhang, Yunju, Bing He, and Yuxi Sun. "Computational study on the mechanisms and kinetics of the CH2CCl + O2 reaction." Canadian Journal of Chemistry 98, no. 8 (2020): 395–402. http://dx.doi.org/10.1139/cjc-2019-0293.
Pełny tekst źródłaXu, Z. F., and M. C. Lin. "Kinetics and mechanism for the CH2O + NO2 reaction: A computational study." International Journal of Chemical Kinetics 35, no. 5 (2003): 184–90. http://dx.doi.org/10.1002/kin.10115.
Pełny tekst źródłaThota, Srinivasarao, C. Balarama Krishna, and Thulasi Bikku. "AN ITERATIVE ALGORITHM FOR OPTIMIZING REACTION KINETICS AND THERMODYNAMIC EQUILIBRIA: APPLICATIONS IN CHEMICAL SYSTEMS." RASAYAN Journal of Chemistry 18, no. 03 (2025): 1347–53. https://doi.org/10.31788/rjc.2025.1839247.
Pełny tekst źródłaGallego-Villada, Luis A., Wander Y. Perez-Sena, Julián E. Sánchez-Velandia, et al. "Synthesis of dihydrocarvone over dendritic ZSM-5 Zeolite: A comprehensive study of experimental, kinetics, and computational insights." Chemical Engineering Journal 498 (June 7, 2024): 155377. https://doi.org/10.1016/j.cej.2024.155377.
Pełny tekst źródłaHe, Bo, Wan Sheng Nie, Song Jiang Feng, and Guo Qiang Li. "A Modified Implicit Iterative Difference Algorithm for Stiff Chemical Kinetic Equations in Complex Combustion System." Advanced Materials Research 295-297 (July 2011): 2333–40. http://dx.doi.org/10.4028/www.scientific.net/amr.295-297.2333.
Pełny tekst źródłaStack, Andrew G., and Paul R. C. Kent. "Geochemical reaction mechanism discovery from molecular simulation." Environmental Chemistry 12, no. 1 (2015): 20. http://dx.doi.org/10.1071/en14045.
Pełny tekst źródłaPlanas, Ferran, Michael J. McLeish, and Fahmi Himo. "Computational characterization of enzyme-bound thiamin diphosphate reveals a surprisingly stable tricyclic state: implications for catalysis." Beilstein Journal of Organic Chemistry 15 (January 16, 2019): 145–59. http://dx.doi.org/10.3762/bjoc.15.15.
Pełny tekst źródłaBoteju, Welathantrige Thilini Niranga, Akhil Abraham, Sathish Ponnurangam, and Venkataraman Thangadurai. "Effective Lithium Polysulfides Anchoring on Vanadium Disulfide Facets for Lithium-Sulfur Batteries – A Computational Study." ECS Meeting Abstracts MA2024-01, no. 5 (2024): 742. http://dx.doi.org/10.1149/ma2024-015742mtgabs.
Pełny tekst źródłaMakul, Natt. "Towards Computational CO2 Capture and Storage Models." Global Environmental Engineers 8 (December 25, 2021): 55–69. http://dx.doi.org/10.15377/2410-3624.2021.08.5.
Pełny tekst źródłaHafeez, Sumbul, Vikas Khatri, Hemant K. Kashyap, and Leena Nebhani. "Computational and experimental approach to evaluate the effect of initiator concentration, solvents, and enes on the TEMPO driven thiol–ene reaction." New Journal of Chemistry 44, no. 43 (2020): 18625–32. http://dx.doi.org/10.1039/d0nj02882g.
Pełny tekst źródła