Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Continuum mechanics.

Artykuły w czasopismach na temat „Continuum mechanics”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Continuum mechanics”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Liu,, I.-Shih, and E. DeSantiago,. "Continuum Mechanics." Applied Mechanics Reviews 56, no. 3 (May 1, 2003): B34—B35. http://dx.doi.org/10.1115/1.1566392.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Romano, Giovanni, Raffaele Barretta, and Marina Diaco. "Geometric continuum mechanics." Meccanica 49, no. 1 (June 28, 2013): 111–33. http://dx.doi.org/10.1007/s11012-013-9777-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Baranyai, Tamás. "Projective continuum mechanics." Comptes Rendus. Mécanique 353, G1 (May 12, 2025): 615–26. https://doi.org/10.5802/crmeca.298.

Pełny tekst źródła
Streszczenie:
The description of Cauchy stress and infinitesimal strain tensors is given, such that it is compatible with the homogeneous coordinate description of projective geometry. It is shown that neither material isotropy nor global material orthotropy are projective invariants thus the transformation of known solutions is useful only for statically determinate problems. As membrane shells are often statically determinate, they are identified as a potential area of application. The transformation of the graph of the Airy stress function is given in a point-wise projective three dimensional way, which preserves its correspondence with the shape function, as established by Pucher’s equation of a unidirectionally loaded membrane shell.
Style APA, Harvard, Vancouver, ISO itp.
4

Silbermann, C. B., and J. Ihlemann. "Analogies between continuum dislocation theory, continuum mechanics and fluid mechanics." IOP Conference Series: Materials Science and Engineering 181 (March 2017): 012037. http://dx.doi.org/10.1088/1757-899x/181/1/012037.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Zhang-ji, Lu. "Micropolar continuum mechanics is more profound than classical continuum mechanics." Applied Mathematics and Mechanics 8, no. 10 (October 1987): 939–46. http://dx.doi.org/10.1007/bf02454256.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Molerus, O. "Fluid mechanics and continuum mechanics." Heat and Mass Transfer 44, no. 5 (May 30, 2007): 625–33. http://dx.doi.org/10.1007/s00231-007-0284-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Burr, A., F. Hild, and F. A. Leckie. "Micro-mechanics and continuum damage mechanics." Archive of Applied Mechanics 65, no. 7 (September 1995): 437–56. http://dx.doi.org/10.1007/bf00835656.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Santaoja, Kari Juhani. "On continuum damage mechanics." Rakenteiden Mekaniikka 52, no. 3 (August 31, 2019): 125–47. http://dx.doi.org/10.23998/rm.76025.

Pełny tekst źródła
Streszczenie:
A material containing spherical microvoids with a Hookean matrix response was shown to take the appearance usually applied in continuum damage mechanics. However, the commonly used variable damage D was replaced with the void volume fraction f , which has a clear physical meaning, and the elastic strain tensor \Bold {ε}^e with the damage-elastic strain tensor \Bold {ε}^{de}. The postulate of strain equivalence with the effective stress concept was reformulated and applied to a case where the response of the matrix obeys Hooke’s law. In contrast to many other studies, in the derived relation between the effective stress tensor \Bold {\Tilde{σ}} and the stress tensor \Bold {σ}, the tensor \Bold {\Tilde{σ}} is symmetric. A uniaxial bar model was introduce for clarifying the derived results. Other candidates for damage were demonstrated by studying the effect of carbide coarsening on creep rate.
Style APA, Harvard, Vancouver, ISO itp.
9

Pavelka, Michal, Ilya Peshkov, and Václav Klika. "On Hamiltonian continuum mechanics." Physica D: Nonlinear Phenomena 408 (July 2020): 132510. http://dx.doi.org/10.1016/j.physd.2020.132510.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Besseling, J. F. "Mechanics and continuum thermodynamics." Archive of Applied Mechanics (Ingenieur Archiv) 70, no. 1-3 (February 22, 2000): 115–26. http://dx.doi.org/10.1007/s004199900049.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Alfredsson, K. S., and U. Stigh. "Continuum damage mechanics revised." International Journal of Solids and Structures 41, no. 15 (July 2004): 4025–45. http://dx.doi.org/10.1016/j.ijsolstr.2004.02.052.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Kum, Oyeon, and William G. Hoover. "Time-reversible continuum mechanics." Journal of Statistical Physics 76, no. 3-4 (August 1994): 1075–81. http://dx.doi.org/10.1007/bf02188699.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Peshkov, Ilya, Evgeniy Romenski, and Michael Dumbser. "Continuum mechanics with torsion." Continuum Mechanics and Thermodynamics 31, no. 5 (April 10, 2019): 1517–41. http://dx.doi.org/10.1007/s00161-019-00770-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Ramkissoon, H. "Representations in Continuum Mechanics." ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 66, no. 1 (1986): 60–61. http://dx.doi.org/10.1002/zamm.19860660116.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

KOTAKE, Shigeo. "Explanation of Mechanical Properties from Quantum Continuum Mechanics." Proceedings of the JSME annual meeting 2000.3 (2000): 355–56. http://dx.doi.org/10.1299/jsmemecjo.2000.3.0_355.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Oller, Sergio, Omar Salomón, and Eugenio Oñate. "A continuum mechanics model for mechanical fatigue analysis." Computational Materials Science 32, no. 2 (February 2005): 175–95. http://dx.doi.org/10.1016/j.commatsci.2004.08.001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Sciammarella, Cesar A., Luciano Lamberti, and Federico M. Sciammarella. "Verification of Continuum Mechanics Predictions with Experimental Mechanics." Materials 13, no. 1 (December 22, 2019): 77. http://dx.doi.org/10.3390/ma13010077.

Pełny tekst źródła
Streszczenie:
The general goal of the study is to connect theoretical predictions of continuum mechanics with actual experimental observations that support these predictions. The representative volume element (RVE) bridges the theoretical concept of continuum with the actual discontinuous structure of matter. This paper presents an experimental verification of the RVE concept. Foundations of continuum kinematics as well as mathematical functions relating displacement vectorial fields to the recording of these fields by a light sensor in the form of gray-level scalar fields are reviewed. The Eulerian derivative field tensors are related to the deformation of the continuum: the Euler–Almansi tensor is extracted, and its properties are discussed. The compatibility between the Euler–Almansi tensor and the Cauchy stress tensor is analyzed. In order to verify the concept of the RVE, a multiscale analysis of an Al–SiC composite material is carried out. Furthermore, it is proven that the Euler–Almansi strain tensor and the Cauchy stress tensor are conjugate in the Hill–Mandel sense by solving an identification problem of the constitutive model of urethane rubber.
Style APA, Harvard, Vancouver, ISO itp.
18

Howarth, J. A., and A. Bedford. "Hamilton's Principle in Continuum Mechanics." Mathematical Gazette 70, no. 454 (December 1986): 329. http://dx.doi.org/10.2307/3616226.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Chen, Wei-qiu. "The renaissance of continuum mechanics." Journal of Zhejiang University SCIENCE A 15, no. 4 (April 2014): 231–40. http://dx.doi.org/10.1631/jzus.a1400079.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Saanouni, K., and J. M. A. César De Sá. "Advances in Continuum Damage Mechanics." International Journal of Damage Mechanics 20, no. 4 (May 2011): 483. http://dx.doi.org/10.1177/1056789510395435.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Fosdick, Roger, and Huang Tang. "Surface Transport in Continuum Mechanics." Mathematics and Mechanics of Solids 14, no. 6 (March 11, 2008): 587–98. http://dx.doi.org/10.1177/1081286507087316.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Talpaert,, YR, and JG Simmonds,. "Tensor Analysis and Continuum Mechanics." Applied Mechanics Reviews 57, no. 1 (January 1, 2004): B1. http://dx.doi.org/10.1115/1.1641771.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Bedford, A., and S. L. Passman. "Hamilton’s Principle in Continuum Mechanics." Journal of Applied Mechanics 53, no. 3 (September 1, 1986): 731. http://dx.doi.org/10.1115/1.3171846.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Kachanov, L. M., and D. Krajcinovic. "Introduction to Continuum Damage Mechanics." Journal of Applied Mechanics 54, no. 2 (June 1, 1987): 481. http://dx.doi.org/10.1115/1.3173053.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Maugin, Gerard A., and A. C. Eringen. "Continuum Mechanics of Electromagnetic Solids." Journal of Applied Mechanics 56, no. 4 (December 1, 1989): 986. http://dx.doi.org/10.1115/1.3176205.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Béda, Gyula. "Constitutive Equations in Continuum Mechanics." International Applied Mechanics 39, no. 2 (February 2003): 123–31. http://dx.doi.org/10.1023/a:1023951829541.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Shariff, M. H. B. M. "Spectral Derivatives in Continuum Mechanics." Quarterly Journal of Mechanics and Applied Mathematics 70, no. 4 (August 18, 2017): 479–96. http://dx.doi.org/10.1093/qjmam/hbx014.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Gould, Tim, Georg Jansen, I. V. Tokatly, and John F. Dobson. "Quantum continuum mechanics made simple." Journal of Chemical Physics 136, no. 20 (May 28, 2012): 204115. http://dx.doi.org/10.1063/1.4721269.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Graham, G. A. C., and S. K. Malik. "Continuum mechanics and its applications." International Journal of Plasticity 6, no. 5 (January 1990): 633. http://dx.doi.org/10.1016/0749-6419(90)90048-j.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Potapov, V. D. "Stability via nonlocal continuum mechanics." International Journal of Solids and Structures 50, no. 5 (March 2013): 637–41. http://dx.doi.org/10.1016/j.ijsolstr.2012.10.019.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Tang, C. Y. "Anisotropy in continuum damage mechanics." Scripta Metallurgica et Materialia 29, no. 2 (July 1993): 183–88. http://dx.doi.org/10.1016/0956-716x(93)90305-c.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Cherepanov, G. P. "Invariant integrals in continuum mechanics." Soviet Applied Mechanics 26, no. 7 (July 1990): 619–30. http://dx.doi.org/10.1007/bf00889398.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Barnaby, J. T. "Introduction to continuum damage mechanics." Materials & Design 8, no. 4 (July 1987): 242. http://dx.doi.org/10.1016/0261-3069(87)90152-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Gollub, Jerry. "Continuum Mechanics in Physics Education." Physics Today 56, no. 12 (December 2003): 10–11. http://dx.doi.org/10.1063/1.1650202.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

TOKUOKA, Tatsuo. "What is Rational Continuum Mechanics?" Journal of the Society of Mechanical Engineers 88, no. 796 (1985): 253–59. http://dx.doi.org/10.1299/jsmemag.88.796_253.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Temam,, R., A. Miranville,, and P. Gremaud,. "Mathematical Modeling in Continuum Mechanics." Applied Mechanics Reviews 54, no. 4 (July 1, 2001): B57. http://dx.doi.org/10.1115/1.1383668.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

MURAKAMI, Sumio. "Progress of continuum damage mechanics." JSME international journal 30, no. 263 (1987): 701–10. http://dx.doi.org/10.1299/jsme1987.30.701.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Kuropatenko, V. F. "New models of continuum mechanics." Journal of Engineering Physics and Thermophysics 84, no. 1 (January 2011): 77–99. http://dx.doi.org/10.1007/s10891-011-0457-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Gegelia, T., and L. Jentsch. "Potential methods in continuum mechanics." Georgian Mathematical Journal 1, no. 6 (November 1994): 599–640. http://dx.doi.org/10.1007/bf02254683.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Angoshtari, Arzhang, and Arash Yavari. "Differential Complexes in Continuum Mechanics." Archive for Rational Mechanics and Analysis 216, no. 1 (November 5, 2014): 193–220. http://dx.doi.org/10.1007/s00205-014-0806-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Malyarenko, Anatoliy, and Martin Ostoja-Starzewski. "Towards stochastic continuum damage mechanics." International Journal of Solids and Structures 184 (February 2020): 202–10. http://dx.doi.org/10.1016/j.ijsolstr.2019.02.023.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Scholle, Markus. "Variational formulations in continuum mechanics." PAMM 11, no. 1 (December 2011): 693–94. http://dx.doi.org/10.1002/pamm.201110336.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Altenbach, H. "Book Review:Fridtjov Irgens, Continuum Mechanics." ZAMM 88, no. 6 (June 5, 2008): 520. http://dx.doi.org/10.1002/zamm.200890008.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Capecchi, Danilo, and Giuseppe C. Ruta. "Piola’s contribution to continuum mechanics." Archive for History of Exact Sciences 61, no. 4 (March 23, 2007): 303–42. http://dx.doi.org/10.1007/s00407-007-0002-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Ragueneau, Frédéric, Arnaud Delaplace, and Luc Davenne. "Mechanical behaviour related to continuum damage mechanics for concrete." Revue Française de Génie Civil 7, no. 5 (May 2003): 635–45. http://dx.doi.org/10.1080/12795119.2003.9692514.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Rodriguez, Miguel A., Christoph M. Augustin, and Shawn C. Shadden. "FEniCS mechanics: A package for continuum mechanics simulations." SoftwareX 9 (January 2019): 107–11. http://dx.doi.org/10.1016/j.softx.2018.10.005.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Stuke, Bernward. "Towards a Fundamental Structure of Continuum Mechanics." Zeitschrift für Naturforschung A 48, no. 8-9 (September 1, 1993): 883–94. http://dx.doi.org/10.1515/zna-1993-8-909.

Pełny tekst źródła
Streszczenie:
Abstract For a class of systems obeying Euler's equation of motion the existence of a quantity to be named "proper mechanical energy" (PME) is shown which, together with internal energy, results in a quantity to be named "proper energy" (PE), which is conserved under conditions of time-dependent potentials. The appertaining formal structure for the continuum mechanics of such systems is the counterpart to Gibbs' fundamental equation of thermodynamics and the relations deriving therefrom. Euler's equation of motion, in particular, corresponds to the Gibbs-Duhem equation of thermodynamics. The transport properties of PME and PE are different from those of the corresponding conventional energies. The results point to a general structure of this kind for continuum mechanics.
Style APA, Harvard, Vancouver, ISO itp.
48

Delphenich, D. H. "The optical-mechanical analogy for wave mechanics: a new hope." Journal of Physics: Conference Series 2197, no. 1 (March 1, 2022): 012005. http://dx.doi.org/10.1088/1742-6596/2197/1/012005.

Pełny tekst źródła
Streszczenie:
Abstract The continuum-mechanical formulation of wave mechanics suggests that there is an intermediate stage of theoretical generality between wave mechanics and point mechanics, namely, continuum mechanics. When that argument is applied to the corresponding transition from wave optics to geometrical optics, the corresponding intermediate stage is essentially the geometrical theory of diffraction, i.e., the theory of diffracted geodesics.
Style APA, Harvard, Vancouver, ISO itp.
49

Jorshari, Tahereh Doroudgar, and Mir Abbas Roudbari. "A Review on the Mechanical Behavior of Size-Dependent Beams and Plates using the Nonlocal Strain-Gradient Model." Journal of Basic & Applied Sciences 17 (December 1, 2021): 184–93. http://dx.doi.org/10.29169/1927-5129.2021.17.18.

Pełny tekst źródła
Streszczenie:
Nowadays, the mechanical characteristics of micro-/nano-structures in the various types of engineering disciplines are considered as remarkable criteria which may restrict the performance of small-scale structures in the reality for a certain application. This paper deals with a comprehensive review pertinent to using the nonlocal strain-gradient continuum mechanics model of size-dependent micro-/nano-beams/-plates. According to the non-classical features of materials, using size-dependent continuum mechanics theories is mandatory to investigate accurately the mechanical characteristics of the micro-/nano-structures. Recently, the number of researches related to the analysis of micro-/nano-structures with various geometry including beams as well as plates is considerable. In this regard, the mechanical behavior of these structures induced by different loadings such as vibration, wave propagation, and buckling behavior associated with the nonlocal strain-gradient continuum mechanics model is presented in this review work. Proposing the most valuable literature pertinent to the nonlocal strain-gradient continuum mechanics theory of micro-/nano-beams/plates is the main objective of this detailed survey.
Style APA, Harvard, Vancouver, ISO itp.
50

Engelbrecht, J., T. Peets, and K. Tamm. "Continuum mechanics and signals in nerves." Proceedings of the Estonian Academy of Sciences 70, no. 1 (2021): 3. http://dx.doi.org/10.3176/proc.2021.1.02.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii