Gotowa bibliografia na temat „Conventional learning method”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Conventional learning method”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Conventional learning method"
Richard, Frimpong*1 Awal Mohammed2 Francis Ohene Boateng1. "A Comparative Study Between Experiential and Conventional Teaching Methods on Students' Retention of Mathematics Concepts." International Journal of Scientific Research and Technology 2, no. 5 (2025): 190–94. https://doi.org/10.5281/zenodo.15349652.
Pełny tekst źródłaRohmawati, Lutfi. "PENGARUH METODE PEMBELAJARAN IOC (INSIDE OUTSIDE CIRCLE) TERHADAP KEAKTIFAN DAN PRESTASI BELAJAR SISWA (Studi Eksperimen Siswa Kelas X SMA NU Widasari pada Mata Pelajaran Ekonomi)." Equilibrium: Jurnal Penelitian Pendidikan dan Ekonomi 15, no. 02 (2019): 1–15. http://dx.doi.org/10.25134/equi.v15i02.1615.
Pełny tekst źródłaGolubinskiy, Andrey, and Andrey Tolstykh. "Hybrid method of conventional neural network training." Informatics and Automation 20, no. 2 (2021): 463–90. http://dx.doi.org/10.15622/ia.2021.20.2.8.
Pełny tekst źródłaKusuma, Sumardiansyah Perdana. "Pengaruh Metode Pembelajaran dan Berpikir Kreatif Terhadap Hasil Belajar Sejarah Siswa SMA." Jurnal Pendidikan Sejarah 3, no. 2 (2014): 28. http://dx.doi.org/10.21009/jps.032.04.
Pełny tekst źródłaIto, Ryuji, Hajime Nobuhara, and Shigeru Kato. "Transfer Learning Method for Object Detection Model Using Genetic Algorithm." Journal of Advanced Computational Intelligence and Intelligent Informatics 26, no. 5 (2022): 776–83. http://dx.doi.org/10.20965/jaciii.2022.p0776.
Pełny tekst źródłaLi, Chengbo, Yu Zhang, and Charles C. Mosher. "A hybrid learning-based framework for seismic denoising." Leading Edge 38, no. 7 (2019): 542–49. http://dx.doi.org/10.1190/tle38070542.1.
Pełny tekst źródłaSaputra, Alexander Pratama, Yos Sudarman, and Marzam Marzam. "PENGGUNAAN METODE KONVENSIONAL OLEH GURU PADA PEMBELAJARAN SENI BUDAYA (MUSIK) DI SMP NEGERI 2 PAINAN." Jurnal Sendratasik 8, no. 4 (2019): 68. http://dx.doi.org/10.24036/jsu.v7i4.105110.
Pełny tekst źródłaElferida, Sormin. "Use of Practicum Learning Methods in Improving Learning Outcomes." International Journal of Social Science And Human Research 06, no. 07 (2023): 4183–90. https://doi.org/10.5281/zenodo.8153449.
Pełny tekst źródłaOctavia, Vera. "EFEKTIFITAS PEMBELAJARAN STATISTIKA DENGAN METODE TEAM ASSISTED INDIVIDUALIZATION TERHADAP HASIL BELAJAR MAHASISWA." Jurnal Pendidikan Matematika Universitas Lampung 10, no. 2 (2022): 170–85. http://dx.doi.org/10.23960/mtk/v10i2.pp170-185.
Pełny tekst źródłaBankar, Akshay, and K. P. Wani. "Development of Non-Conventional Method of Lissajous pattern for gear fault diagnosis using Machine Learning Technique." Journal of Physics: Conference Series 2601, no. 1 (2023): 012035. http://dx.doi.org/10.1088/1742-6596/2601/1/012035.
Pełny tekst źródłaRozprawy doktorskie na temat "Conventional learning method"
Pizarchik, Mary. "The effects of experiential learning: An examination of three styles of experiential education programs and their implications for conventional classrooms." CSUSB ScholarWorks, 2007. https://scholarworks.lib.csusb.edu/etd-project/3305.
Pełny tekst źródłaOwusu, James. "The impact of constructivist-based teaching method on secondary school lerners' errors in algebra." Diss., 2015. http://hdl.handle.net/10500/19207.
Pełny tekst źródłaKsiążki na temat "Conventional learning method"
choi, shine, saara särmä, cristina masters, marysia zalewski, michelle lee brown, and swati parashar. Ripping, Cutting, Stitching. Lexington Books, 2023. https://doi.org/10.5040/9798881813505.
Pełny tekst źródłaSicari, Rosa, Edyta Płońska-Gościniak, and Jorge Lowenstein. Stress echocardiography: image acquisition and modalities. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780198726012.003.0013.
Pełny tekst źródłaCzęści książek na temat "Conventional learning method"
Basheer, Firdaus, Mohamed Saleem Nazmudeen, and Fadzliwati Mohiddin. "Comparative Analysis Between Conventional Method Versus Machine Learning Method for Pipeline Condition Prediction." In Materials Forming, Machining and Tribology. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-70009-6_6.
Pełny tekst źródłaChang, Ruey-Feng, Yao-Sian Huang, and Yan-Wei Lee. "Texture Analysis for Breast Ultrasound Using Conventional Method and Deep Learning." In Handbook of Texture Analysis. CRC Press, 2024. http://dx.doi.org/10.1201/9780367486099-9.
Pełny tekst źródłaBlank, Andreas, Lukas Zikeli, Sebastian Reitelshöfer, Engin Karlidag, and Jörg Franke. "Augmented Virtuality Input Demonstration Refinement Improving Hybrid Manipulation Learning for Bin Picking." In Lecture Notes in Mechanical Engineering. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-18326-3_32.
Pełny tekst źródłaVerhaeghe, Jarne, Jeroen Van Der Donckt, Femke Ongenae, and Sofie Van Hoecke. "Powershap: A Power-Full Shapley Feature Selection Method." In Machine Learning and Knowledge Discovery in Databases. Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-26387-3_5.
Pełny tekst źródłaNair, Rashmi S., and Rohit Agrawal. "An Integrated Approach of Conventional and Deep Learning Method for Underwater Image Enhancement." In Soft Computing for Intelligent Systems. Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1048-6_14.
Pełny tekst źródłaKawasaki, Yoshifumi, Akai Akihito, and Ryusuke Hirao. "Development of Vehicle State Estimation Method for Dedicated Sensor-Less Semi-active Suspension Using AI Technology." In Lecture Notes in Mechanical Engineering. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-70392-8_125.
Pełny tekst źródłaChorapalli, Jnanendra Vijay Kumar, and Soukat Kumar Das. "Sustainable Method for Determining Shear Strength Parameters by Machine Learning." In Lecture Notes in Civil Engineering. Springer Nature Switzerland, 2025. https://doi.org/10.1007/978-3-031-69626-8_120.
Pełny tekst źródłaChabalala, Shumile, Pius Owolawi, and Sunday Ojo. "CNN to BiLSTM: Enhancing Setswana Named Entity Recognition." In Communications in Computer and Information Science. Springer Nature Switzerland, 2025. https://doi.org/10.1007/978-3-031-85856-7_8.
Pełny tekst źródłaShimomura, Mitsuhiko, Masahiro Fujiwara, Yasutoshi Makino, and Hiroyuki Shinoda. "Estimation of Frictional Force Using the Thermal Images of Target Surface During Stroking." In Haptics: Science, Technology, Applications. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-06249-0_27.
Pełny tekst źródłaLee, Sangkyu, and Issam El Naqa. "Conventional Machine Learning Methods." In Machine and Deep Learning in Oncology, Medical Physics and Radiology. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-83047-2_3.
Pełny tekst źródłaStreszczenia konferencji na temat "Conventional learning method"
Agalya, D., and S. Kamalakkannan. "Detection of Brain Tumor Using Transfer Learning Using Conventional Autoencoder with Long Short Term Memory Method." In 2025 6th International Conference on Mobile Computing and Sustainable Informatics (ICMCSI). IEEE, 2025. https://doi.org/10.1109/icmcsi64620.2025.10883552.
Pełny tekst źródłaChen, Wenwu, Shijie Feng, and Chao Zuo. "Deep-learning-enabled Temporally Super-resolved Multiplexed Fringe Projection Profilometry: High-speed kHz 3D Imaging with Low-speed Camera." In Computational Optical Sensing and Imaging. Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cosi.2024.cf4a.5.
Pełny tekst źródłaXu, Chenyu, Zhouyu Jin, Bo Xiong, You Zhou, and Xun Cao. "3D Image Restoration using Implicit Neural Representations for Brightfield and Widefield Fluorescence Microscopy." In Computational Optical Sensing and Imaging. Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cosi.2024.cth4b.5.
Pełny tekst źródłaHaghshenas, Majid, and Ranganathan Kumar. "Curvature Estimation Modeling Using Machine Learning for CLSVOF Method: Comparison With Conventional Methods." In ASME-JSME-KSME 2019 8th Joint Fluids Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/ajkfluids2019-5415.
Pełny tekst źródłaPermana, Julius I., Annisa Jusuf, Bambang K. Hadi, and Arief Yudhanto. "Stress analysis of flying V-like non-conventional aircraft structures using finite element method." In MACHINE LEARNING AND INFORMATION PROCESSING: PROCEEDINGS OF ICMLIP 2023. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0181672.
Pełny tekst źródłaTemizel, Cenk Temizel, Uchenna Odi, Nouf Al-Sulaiman, et al. "Production Forecasting in Conventional Oil Reservoirs Using Deep Learning." In SPE Western Regional Meeting. SPE, 2022. http://dx.doi.org/10.2118/209277-ms.
Pełny tekst źródłaEaglin, Gerald, and Joshua Vaughan. "Leveraging Conventional Control to Improve Performance of Systems Using Reinforcement Learning." In ASME 2020 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/dscc2020-3307.
Pełny tekst źródłaRumenapp, Joseph. "Memoing-as-Method-and-Data: Teaching and Learning Post-Qualitative Methods in a Conventional Humanist Context." In 2019 AERA Annual Meeting. AERA, 2019. http://dx.doi.org/10.3102/1433540.
Pełny tekst źródłaRashid, Hori, Nawras Khudhur, Yusuke Hayashi, and Tsukasa Hirashima. "The Effect of Logical Argument Recomposition using Triangular Logic Model on Critical Thinking Compared to Conventional Method." In ICEEL 2022: 2022 6th International Conference on Education and E-Learning. ACM, 2022. http://dx.doi.org/10.1145/3578837.3578869.
Pełny tekst źródłaFirdos, Kauser, and Bhargavi Deshpande. "Security Analysis of Conventional Attack by Suitable RFID Based Deep Learning Method in Industrial IoT." In 2023 IEEE 4th Annual Flagship India Council International Subsections Conference (INDISCON). IEEE, 2023. http://dx.doi.org/10.1109/indiscon58499.2023.10270683.
Pełny tekst źródłaRaporty organizacyjne na temat "Conventional learning method"
Porto, Stella C., Jacqueline Pinto Mota, and Andrea Attis Beltran. An Integrated Approach to Impact Evaluation and Recognition of Learning. Inter-American Development Bank, 2024. http://dx.doi.org/10.18235/0013075.
Pełny tekst źródłaHedyehzadeh, Mohammadreza, Shadi Yoosefian, Dezfuli Nezhad, and Naser Safdarian. Evaluation of Conventional Machine Learning Methods for Brain Tumour Type Classification. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, 2020. http://dx.doi.org/10.7546/crabs.2020.06.14.
Pełny tekst źródłaKaffenberger, Michelle, Jason Silberstein, and Marla Spivack. Evaluating Systems: Three Approaches for Analyzing Education Systems and Informing Action. Research on Improving Systems of Education (RISE), 2022. http://dx.doi.org/10.35489/bsg-rise-wp_2022/093.
Pełny tekst źródłaHart, Carl R., D. Keith Wilson, Chris L. Pettit, and Edward T. Nykaza. Machine-Learning of Long-Range Sound Propagation Through Simulated Atmospheric Turbulence. U.S. Army Engineer Research and Development Center, 2021. http://dx.doi.org/10.21079/11681/41182.
Pełny tekst źródłaAlwan, Iktimal, Dennis D. Spencer, and Rafeed Alkawadri. Comparison of Machine Learning Algorithms in Sensorimotor Functional Mapping. Progress in Neurobiology, 2023. http://dx.doi.org/10.60124/j.pneuro.2023.30.03.
Pełny tekst źródłaVoegeli, Sam. PR-317-17700-WEB Accuracy of Temperature Logging for Calculating Gas Inventory in Storage Caverns. Pipeline Research Council International, Inc. (PRCI), 2019. http://dx.doi.org/10.55274/r0011606.
Pełny tekst źródłaSECOND-ORDER ANALYSIS OF BEAM-COLUMNS BY MACHINE LEARNING-BASED STRUCTURAL ANALYSIS THROUGH PHYSICS-INFORMED NEURAL NETWORKS. The Hong Kong Institute of Steel Construction, 2023. http://dx.doi.org/10.18057/ijasc.2023.19.4.10.
Pełny tekst źródłaDEEP LEARNING DAMAGE IDENTIFICATION METHOD FOR STEEL- FRAME BRACING STRUCTURES USING TIME–FREQUENCY ANALYSIS AND CONVOLUTIONAL NEURAL NETWORKS. The Hong Kong Institute of Steel Construction, 2023. http://dx.doi.org/10.18057/ijasc.2023.19.4.8.
Pełny tekst źródłaSUPER-RESOLUTION RECONSTRUCTION AND HIGH-PRECISION TEMPERATURE MEASUREMENT OF THERMAL IMAGES UNDER HIGH- TEMPERATURE SCENES BASED ON NEURAL NETWORK. The Hong Kong Institute of Steel Construction, 2024. http://dx.doi.org/10.18057/ijasc.2024.20.2.9.
Pełny tekst źródła