Gotowa bibliografia na temat „Convolution power”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Convolution power”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Convolution power"
Li, Mingchen, Xuechen Zhang, Yixiao Huang, and Samet Oymak. "On the Power of Convolution-Augmented Transformer." Proceedings of the AAAI Conference on Artificial Intelligence 39, no. 17 (2025): 18393–402. https://doi.org/10.1609/aaai.v39i17.34024.
Pełny tekst źródłaKim, Hyeonkyu, and Hoyoung Yoo. "Area-Efficient Two-Dimensional Separable Convolution Structure." Journal of Imaging Science and Technology 63, no. 5 (2019): 50404–1. http://dx.doi.org/10.2352/j.imagingsci.technol.2019.63.5.050404.
Pełny tekst źródłaAkbar, Muhammad Ali, Bo Wang, Samir Brahim Belhaouari, and Amine Bermak. "DROPc-Dynamic Resource Optimization for Convolution Layer." Electronics 14, no. 13 (2025): 2658. https://doi.org/10.3390/electronics14132658.
Pełny tekst źródłaSheng, Wanxing, Keyan Liu, Dongli Jia, Shuo Chen, and Rongheng Lin. "Short-Term Load Forecasting Algorithm Based on LST-TCN in Power Distribution Network." Energies 15, no. 15 (2022): 5584. http://dx.doi.org/10.3390/en15155584.
Pełny tekst źródłaZhao, Yulin, Donghui Wang, and Leiou Wang. "Convolution Accelerator Designs Using Fast Algorithms." Algorithms 12, no. 5 (2019): 112. http://dx.doi.org/10.3390/a12050112.
Pełny tekst źródłaXiao, Lei. "Construction Technology and Quality Control of Power and Electrical Engineering Based on Convolutional Neural Network." Security and Communication Networks 2021 (December 17, 2021): 1–15. http://dx.doi.org/10.1155/2021/8964532.
Pełny tekst źródłaPark, Eunpyoung, and Jongsu Park. "Low-power Convolution Layer Hardware Design for Convolutional Neural Network Operations." Journal of the Korea Institute of Information and Communication Engineering 28, no. 7 (2024): 887–90. http://dx.doi.org/10.6109/jkiice.2024.28.7.887.
Pełny tekst źródłaALBIN, J. M. P. "A NOTE ON THE CLOSURE OF CONVOLUTION POWER MIXTURES (RANDOM SUMS) OF EXPONENTIAL DISTRIBUTIONS." Journal of the Australian Mathematical Society 84, no. 1 (2008): 1–7. http://dx.doi.org/10.1017/s1446788708000104.
Pełny tekst źródłaComte, F., and V. Genon-Catalot. "Convolution power kernels for density estimation." Journal of Statistical Planning and Inference 142, no. 7 (2012): 1698–715. http://dx.doi.org/10.1016/j.jspi.2012.02.038.
Pełny tekst źródłaLiu, Jun, Wei Li, and Zhuang Du. "Combined with the residual and multi-scale method for Chinese thermal power system record text recognition." Thermal Science 23, no. 5 Part A (2019): 2631–40. http://dx.doi.org/10.2298/tsci181128152l.
Pełny tekst źródłaRozprawy doktorskie na temat "Convolution power"
Karimi, Ahmad Maroof. "DATA SCIENCE AND MACHINE LEARNING TO PREDICT DEGRADATION AND POWER OF PHOTOVOLTAIC SYSTEMS: CONVOLUTIONAL AND SPATIOTEMPORAL GRAPH NEURAL NETWORK." Case Western Reserve University School of Graduate Studies / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=case1601082841477951.
Pełny tekst źródłaHomeili, Saeid. "Metrological characterisation of Low Power Voltage Transformers by using impulse response analysis." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/20998/.
Pełny tekst źródłaSazish, Abdul Naser. "Efficient architectures and power modelling of multiresolution analysis algorithms on FPGA." Thesis, Brunel University, 2011. http://bura.brunel.ac.uk/handle/2438/6290.
Pełny tekst źródłaVillarreal-Reyes, Salvador. "Convolutional coding schemes with convenient power spectral density characteristics." Thesis, Loughborough University, 2007. https://dspace.lboro.ac.uk/2134/15951.
Pełny tekst źródłaMechmeche, Haïfa. "Méthodologies de simulation de de pré-dimensionnement vibro-acoustique des machines à reluctance variable." Thesis, Ecole centrale de Lille, 2015. http://www.theses.fr/2015ECLI0014.
Pełny tekst źródłaTomatsopoulos, Billy Vasileios. "Design and implementation of low-power CMOS analogue convolutional decoders using the modified feedback decoding algorithm." Thesis, University College London (University of London), 2007. http://discovery.ucl.ac.uk/1446263/.
Pełny tekst źródłaKornfeil, Vojtěch. "Soubor úloh pro kurs Sběr, analýza a zpracování dat." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2008. http://www.nusl.cz/ntk/nusl-217707.
Pełny tekst źródłaJahangiri-Lahekani, M. "Coefficients of powers of subclasses of univalent functions and convolutions of some classes of polynomials and analytic functions." Thesis, University of York, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.356834.
Pełny tekst źródłaHanzálek, Pavel. "Praktické ukázky zpracování signálů." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2019. http://www.nusl.cz/ntk/nusl-400849.
Pełny tekst źródłaLee, Ji Hyun. "Development of a Tool to Assist the Nuclear Power Plant Operator in Declaring a State of Emergency Based on the Use of Dynamic Event Trees and Deep Learning Tools." The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1543069550674204.
Pełny tekst źródłaKsiążki na temat "Convolution power"
Big Data: 4 Manuscripts - Data Analytics for Beginners, Deep Learning with Keras, Analyzing Data with Power BI, Convolutional Neural Networks in Python. CreateSpace Independent Publishing Platform, 2017.
Znajdź pełny tekst źródłaCzęści książek na temat "Convolution power"
Gazi, Orhan. "Energy, Power, Convolution, and Systems." In Principles of Signals and Systems. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-17789-7_3.
Pełny tekst źródłaGan, Woon Siong. "Convolution, Correlation, and Power Spectral Density." In Signal Processing and Image Processing for Acoustical Imaging. Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-10-5550-8_6.
Pełny tekst źródłaZhou, Honghui, Ruyi Qin, Zihan Liu, Ying Qian, and Xiaoming Ju. "Optimizing Performance of Image Processing Algorithms on GPUs." In Proceeding of 2021 International Conference on Wireless Communications, Networking and Applications. Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2456-9_95.
Pełny tekst źródłaMujeeb, Sana, Nadeem Javaid, Hira Gul, Nazia Daood, Shaista Shabbir, and Arooj Arif. "Wind Power Forecasting Based on Efficient Deep Convolution Neural Networks." In Advances on P2P, Parallel, Grid, Cloud and Internet Computing. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-33509-0_5.
Pełny tekst źródłaWei, Jianrong, Yilin Liu, Quan Wang, et al. "Encryption Algorithm of Power Equipment Nameplate Based on Quadratic Convolution." In Lecture Notes in Electrical Engineering. Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-0408-2_59.
Pełny tekst źródłaChothani, Nilesh, Maulik Raichura, and Dharmesh Patel. "Convolution Neural Network and XGBoost-Based Fault Identification in Power Transformer." In Studies in Infrastructure and Control. Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-3870-4_8.
Pełny tekst źródłaAnzalone, Erik, Maurizio Capra, Riccardo Peloso, Maurizio Martina, and Guido Masera. "Low-Power Hardware Accelerator for Sparse Matrix Convolution in Deep Neural Network." In Progresses in Artificial Intelligence and Neural Systems. Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5093-5_8.
Pełny tekst źródłaShrinidhi, S., S. Vinuja, R. Lakshmi Prasanna, B. Sumanth, and Navya Mohan. "High Speed and Power Efficient Multiplier and Adder Designs for Linear Convolution." In Lecture Notes in Electrical Engineering. Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-7753-4_16.
Pełny tekst źródłaGong, Xundong, Fei Hu, Li Jiang, et al. "Extended Kalman Filtering Power System Dynamic State Estimation Based on Time Convolution Networks." In Conference Proceedings of 2022 2nd International Joint Conference on Energy, Electrical and Power Engineering. Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-4334-0_102.
Pełny tekst źródłaKhairulzaman, Mohd Ridzuan, and Patrick Goh. "Improving the Reference Impedance for Fast S-Parameter Convolution via an Analytical Method." In 9th International Conference on Robotic, Vision, Signal Processing and Power Applications. Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-1721-6_11.
Pełny tekst źródłaStreszczenia konferencji na temat "Convolution power"
Tiwari, Aarushi, Julian Gamboa, Tabassom Hamidfar, Xi Shen, Shamima A. Mitu, and Selim M. Shahriar. "Opto-electronic Balanced Joint Transform Correlator as a Convolution Stage for Neural Networks." In Frontiers in Optics. Optica Publishing Group, 2024. https://doi.org/10.1364/fio.2024.jtu4a.55.
Pełny tekst źródłaGao, Liming, Ke Zheng, and Tao Liao. "Error prediction for capacitor voltage transformer based on graph convolution and temporal convolution." In 2024 4th International Conference on Energy, Power and Electrical Engineering (EPEE). IEEE, 2024. https://doi.org/10.1109/epee63731.2024.10875391.
Pełny tekst źródłaZhong, Yuhui, Tiangui Yang, Xiaoling Chen, et al. "Dynamic graph convolution with graph sparsification for power load forecasting." In International Symposium on Artificial Intelligence Innovations (ISAII 2025), edited by Xin Xu and Weihua Ou. SPIE, 2025. https://doi.org/10.1117/12.3075131.
Pełny tekst źródłaNarahari, Sujatha Canavoy, K. Haripriya, M. Srinath, and Ch Jasmitha. "Colour Image Noise Removal using Convolution Neural Network." In 2024 IEEE International Conference on Smart Power Control and Renewable Energy (ICSPCRE). IEEE, 2024. http://dx.doi.org/10.1109/icspcre62303.2024.10675291.
Pełny tekst źródłaZhao, Ning, Jingyue Xu, and Gang Zhou. "Turbine Data cleansing based on conditional depth convolution generation confrontation." In 2024 6th International Conference on Energy, Power and Grid (ICEPG). IEEE, 2024. https://doi.org/10.1109/icepg63230.2024.10775622.
Pełny tekst źródłaGeng, Zhiheng. "Point Cloud Object Classification based on Dynamic Relation Shape Convolution." In 2024 International Conference on Artificial Intelligence and Power Systems (AIPS). IEEE, 2024. http://dx.doi.org/10.1109/aips64124.2024.00039.
Pełny tekst źródłaMehta, Kamal Kishore, and Kalpana Meena. "Hyper Parameter Optimization and Solar Power Forecasting using Convolution Neural Networks." In 2024 IEEE 5th India Council International Subsections Conference (INDISCON). IEEE, 2024. http://dx.doi.org/10.1109/indiscon62179.2024.10744399.
Pełny tekst źródłaWang, Zian, Yue Yin, Chenxiao Jin, Ruoyao Zhang, Zhilin Gao, and Yihan Huang. "Photovoltaic System Segmentation Algorithm via Transformer and Multi-Scale Convolution." In 2025 8th International Conference on Energy, Electrical and Power Engineering (CEEPE). IEEE, 2025. https://doi.org/10.1109/ceepe64987.2025.11034235.
Pełny tekst źródłaCao, Zhiqiang, Jincheng Yang, Wenxia Zhang, Xiaokui Zang, Mingyang Liu, and Huachang Wang. "Capacitor Voltage Transformer Error Prediction Method Based on Fusion Convolution Module." In 2024 6th International Conference on Energy, Power and Grid (ICEPG). IEEE, 2024. https://doi.org/10.1109/icepg63230.2024.10775656.
Pełny tekst źródłaShen, Yu-Long, Qinyu Huang, and Tao Jin. "Electricity Theft Detection Based on Multi-Scale Feature Fusion Parallel Convolution Model." In 2024 3rd Asia Power and Electrical Technology Conference (APET). IEEE, 2024. https://doi.org/10.1109/apet63768.2024.10882723.
Pełny tekst źródłaRaporty organizacyjne na temat "Convolution power"
Ferdaus, Md Meftahul, Mahdi Abdelguerfi, Kendall Niles, Ken Pathak, and Joe Tom. Widened attention-enhanced atrous convolutional network for efficient embedded vision applications under resource constraints. Engineer Research and Development Center (U.S.), 2024. http://dx.doi.org/10.21079/11681/49459.
Pełny tekst źródłaLee, Michael, Michael D’Arcy, and Gail Vaucher. In-situ Atmospheric Intelligence for Hybrid Power Grids: Volume 6 (Convolutional Neural Networks for Whole Sky Imager Data Analysis). DEVCOM Analysis Center, 2022. http://dx.doi.org/10.21236/ad1171285.
Pełny tekst źródłaNavarro, Adoracion, and Jethro El Camara. Mapping the Energy Sector Issues in the Philippines. Philippine Institute for Development Studies, 2024. http://dx.doi.org/10.62986/dp2023.50.
Pełny tekst źródła