Gotowa bibliografia na temat „Coton fiber”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Coton fiber”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Coton fiber"
Bourgou, Larbouga, Windpouiré Vianney Tarpaga, Sidiki K. Diane i Denys Sanfo. "Evaluation et sélection d’une variété de cotonnier (FK64, Gossypium hirsutum L.) au Burkina Faso". International Journal of Biological and Chemical Sciences 14, nr 3 (18.06.2020): 869–82. http://dx.doi.org/10.4314/ijbcs.v14i3.18.
Pełny tekst źródłaAlexis, Hougni, Imorou Lucien, Dagoudo Augustin i Zoumarou-Wallis Nouhoun. "Caractérisation Agro-Morphologique De Variétés De Cotonnier (Gossypium Hirsutum) Pour Une Régionalisation Economique Pour La Production Du Coton Au Bénin". European Scientific Journal, ESJ 12, nr 36 (31.12.2016): 210. http://dx.doi.org/10.19044/esj.2016.v12n36p210.
Pełny tekst źródłaLong, Robert L., Christopher D. Delhom i Michael P. Bange. "Effects of cotton genotype, defoliation timing and season on fiber cross-sectional properties and yarn performance". Textile Research Journal 91, nr 17-18 (10.02.2021): 1943–56. http://dx.doi.org/10.1177/0040517521992769.
Pełny tekst źródłaYu, Chongwen, Weiying Tao i Timothy A. Calamari. "Treatment and Characterization of Kenaf for Nonwoven and Woven Applications". International Nonwovens Journal os-9, nr 4 (grudzień 2000): 1558925000OS—90. http://dx.doi.org/10.1177/1558925000os-900409.
Pełny tekst źródłaZhang, Wei Hao, Guo Zhong Li i Min Rong Liu. "Properties Research of Cotton Fiber Reinforced Gypsum Based Composites". Advanced Materials Research 194-196 (luty 2011): 1759–62. http://dx.doi.org/10.4028/www.scientific.net/amr.194-196.1759.
Pełny tekst źródłaBalakrishnan, Subashini, GL Dharmasri Wickramasinghe i UG Samudrika Wijayapala. "Study on dyeing behavior of banana fiber with reactive dyes". Journal of Engineered Fibers and Fabrics 14 (styczeń 2019): 155892501988447. http://dx.doi.org/10.1177/1558925019884478.
Pełny tekst źródłaSaputra, Ardian Dwi, M. Fahrur Rozy H, Agus Triono i Imam Sholahuddin. "ORIENTASI SUDUT LILITAN BENANG KATUN TERHADAP KEKUATAN TARIK PADA PIPA KOMPOSIT FILAMENT WINDING". ROTOR 10, nr 1 (1.04.2017): 1. http://dx.doi.org/10.19184/rotor.v10i1.5138.
Pełny tekst źródłaMoghassem, A. R. "Study on the Dyed Cotton Fibers Damage in Spinning Processes and its Effect on the Cotton Mélange Yarn Properties". Research Journal of Textile and Apparel 12, nr 1 (1.02.2008): 71–78. http://dx.doi.org/10.1108/rjta-12-01-2008-b009.
Pełny tekst źródłaLiyanage, Sumedha, i Noureddine Abidi. "Molecular weight and organization of cellulose at different stages of cotton fiber development". Textile Research Journal 89, nr 5 (23.01.2018): 726–38. http://dx.doi.org/10.1177/0040517517753642.
Pełny tekst źródłaZhogashtiev, N., Y. Tashpolotov i N. Kalmurzaev. "Study of Cotton Fiber Surface After Thermal Processing in the Vacuum Chamber by the Method of Scanning Electron Microscopy". Bulletin of Science and Practice 6, nr 8 (15.08.2020): 34–38. http://dx.doi.org/10.33619/2414-2948/57/03.
Pełny tekst źródłaRozprawy doktorskie na temat "Coton fiber"
Kamenopoulou, Vassiliki. "Proprietes dosimetriques des fibres textiles : application a la dosimetrie par resonance paramagnetique electronique d'un accident d'irradiation gamma". Toulouse 3, 1987. http://www.theses.fr/1987TOU30172.
Pełny tekst źródłaKamalha, Edwin. "Resources protection : towards replacement of cotton fiber with polyester". Thesis, Lille 1, 2019. http://www.theses.fr/2019LIL1I024/document.
Pełny tekst źródłaThere is increasing annual demand for cotton due to world population growth and changes in consumers’ purchasing behavior. Other natural fiber options such as wool, linen and silk among others, are produced in very meager proportions. Polyester (poly(ethylene terephthalate) (PET) has qualities that could address this concern for apparel. Unfortunately, consumers are reluctant to wear 100% polyester clothing mainly due to inferior sensory comfort, touch and sometimes appearance. This study sought to improve PET fabric characteristics in order to decrease the gap between human perception and hydrophilic performance of cotton vs. PET. To determine the disparity between cotton and PET woven fabrics, a multisensory study was undertaken using a panel of 12 trained judges against 11 sensory descriptors. Cross-entropy Monte Carlo algorithms, Genetic algorithms, and the Borda Count (BK) technique were used for rank fusion. Principle component analysis (PCA) and agglomerative hierarchical clustering (AHC) were used to create sensory profiles. The descriptor crisp accounted for the highest variability between PET and cotton fabrics (p˂0.05). It was deduced that visual and aesthetics can be used to distinguish between PET and cotton fabrics. To replace cotton with PET via this sensory approach, the modification of stiffness of polyester fabrics was judiciously carried out using NaOH and a silicon softener, with atmospheric air plasma pre-oxidation. PET fabrics treated with NaOH and the silicon softener were perceived soft, smooth, less crisp, and less stiff compared to some cotton and untreated PET fabrics. The profiling of fabrics indicates that conventional PET fabrics can be distinguished from conventional cotton fabrics using both subjective and objective evaluation. It is also argued that textile human sensory perception cannot be directly represented by instrumental measurements. The final part of the study compares the hydrophilic potential and efficacy of two vinyl monomers: Poly-(ethylene glycol) diacrylate (PEGDA) and [2-(methacryloyloxy) ethyl]-trimethylammonium chloride (METAC) radically photo-grafted on the surface of PET fabric. Surface study using X-ray photoelectron spectroscopy (XPS) and Energy Dispersive Spectroscopy (EDS) confirmed the grafting. Moisture tests indicate that PEGDA and METAC induce complete wetting of PET at concentrations 0.1-5% (V:V). Colorimetric measurements (K/S and CIELAB/CH) and colorfastness on dyed PET fabrics suggest that both monomers greatly improve the dyeing efficiency of PET. It is suggested that PEGDA and METAC generate hydrophilic groups on PET; the macroradicals are in a form of vinyl structures which form short chain grafts and demonstrate hydrophilic function. The results of this research can play a practical guiding role in the design of fabrics, sensory property design and contribute to the development of cotton-like polyester fabrics
Hernàndez, Hernàndez Valeria. "Interaction between turgor pressure and plasmodesmata permeability". Thesis, Lyon, 2019. http://www.theses.fr/2019LYSEN076.
Pełny tekst źródłaPlant cells are surrounded by the rigid cell wall that precludes developmental processes that are central in animal development, like cell migration and tissue rearrangement. Instead, plant development relies on cell division and expansion. The current paradigm assumes that cell expansion depends on the biomechanical properties of the cell wall and on the generation of turgor pressure. Plasmodesmata are membrane-lined channels that connect neighboring cells and allow free movement of molecules that are smaller than their diameter (i.e., permeability). It is known that plasmodesmal permeability changes during plant development and that these modifications can affect movement of sugars. Because of this, plasmodesmal permeability seems to be a good candidate for the regulation of turgor pressure during cell expansion, however, its contribution remains largely unexplored. In turn, previous studies suggest that plasmodesmata may respond to changes in turgor pressure. In this work we put forward the hypothesis that turgor pressure and plasmodesmal permeability may affect each other during plant development. We addressed this problem by, first, putting forward a network of interactions between different cellular and molecular factors that might mediate these feedbacks between turgor and plasmodesmata. Second, we generated a computational model to explore one direction of these interactions: the role of plasmodesmal permeability on turgor pressure regulation. Our model uses Lockhart's equations for irreversible cell expansion with addition of plasmodesmal-dependent fluxes of water and solutes. We used cotton fiber as a study system because it is a single cell without division that mostly increases in length. Furthermore, previous experimental studies in this system have correlated closure of plasmodesmata with peak values of turgor pressure. The results of our model suggest that plasmodesmal permeability is, indeed, a key factor in regulating turgor and cotton fiber growth. Moreover, we suggest that dynamical changes of plasmodesmal permeability are needed in order to recover turgor pressure behaviors that have been experimentally reported. Finally, we explored with our collaborators the potential contribution of plasmodesmal permeability in the evolution of complex multicellular plants using the "Dynamical Patterning Modules" (DPMs) framework. These ideas can be useful in understanding how plant body plans originated
Aboe, Modeste. "Etude de la variabilité intra-balle des caractéristiques technologiques des fibres de coton produites en Afrique de l'Ouest et du Centre". Phd thesis, Université de Haute Alsace - Mulhouse, 2012. http://tel.archives-ouvertes.fr/tel-00718836.
Pełny tekst źródłaMcGinley, Susan. "Keys to Cotton Fiber Strength". College of Agriculture and Life Sciences, University of Arizona (Tucson, AZ), 1993. http://hdl.handle.net/10150/622333.
Pełny tekst źródłaMujahid, Hana, Ken Pendarvis, Joseph Reddy, Babi Nallamilli, K. Reddy, Bindu Nanduri i Zhaohua Peng. "Comparative Proteomic Analysis of Cotton Fiber Development and Protein Extraction Method Comparison in Late Stage Fibers". MDPI AG, 2016. http://hdl.handle.net/10150/618719.
Pełny tekst źródłaBelmasrour, Rachid. "The Distribution of Cotton Fiber Length". ScholarWorks@UNO, 2010. http://scholarworks.uno.edu/td/1216.
Pełny tekst źródłaBraden, Chris Alan. "Inheritance of cotton fiber length and distribution". Texas A&M University, 2005. http://hdl.handle.net/1969.1/4355.
Pełny tekst źródłaRjiba, Narjes. "Fibre de coton : microstructures et propriétés de surface". Mulhouse, 2007. http://www.theses.fr/2007MULH0873.
Pełny tekst źródłaThe aim of this work was to characterize the surface of the cotton fibre from a physical and chemical point of view. Raw and ethanol extracted fibres were particularly analysed. This characterization was mainly performed by means of inverse gas chromatography (IGC), which allowed us to determine the surface energy of the fibres as a function of temperature as well as their surface morphology at a molecular scale, before and alter treatment. It was shown that the thermodynamic surface energy of the raw cotton fibre strongly depends on the presence of waxes and pectins which usually cover such a type of fibre. In particular, the melting of waxes on the fibre surface, in a range of temperatures from 50 to 90°C, is clearly pointed out. The nano-morphological aspects of the cotton fibre surface are also greatly affected by the presence of waxes: ethanol extraction leading to a more homogeneous surface from a topographical point of view. To confirm the results obtained by IGC, the characterization of cotton fibres was completed, in the second part of this work, by means of other microscopical (electronic and atomic force microscopies ) and spectroscopie (X-ray photoelectron spectroscopy, vibrational spectroscopies,. . . ) techniques
Celikbag, Yusuf El Mogahzy Yehia. "Developing methods for detecting cotton fiber identity theft". Auburn, Ala., 2009. http://hdl.handle.net/10415/1768.
Pełny tekst źródłaKsiążki na temat "Coton fiber"
Fang, David D., red. Cotton Fiber: Physics, Chemistry and Biology. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-00871-0.
Pełny tekst źródła1941-, Yafa Stephen H., red. Cotton: The biography of a revolutionary fiber. New York: Penguin Books, 2006.
Znajdź pełny tekst źródłaBehery, H. M. Short fiber content and uniformity index in cotton. Oxon, UK: CAB International, 1993.
Znajdź pełny tekst źródłaSeagull, Robert, i Pam Alspaugh. Cotton fiber development and processing: An illustrated overview. Redaktorzy Cotton Incorporated i Texas Tech University. International Textile Center. Lubbock, Tex: International Textile Center, Texas Tech University, 2001.
Znajdź pełny tekst źródłaBasu, Arindam. Cotton fibre selection and grading. Coimbatore: South India Textile Research Association, 2004.
Znajdź pełny tekst źródłaColumbus, Eugene P. Fiber and yarn properties of smooth- and hairy-leaf cotton. [Bethesda, Md]: U.S. Dept. of Agriculture, Agricultural Research Service, 1988.
Znajdź pełny tekst źródłaMcCarty, J. C. Primitive cotton germplasm: Variability for yield and fiber traits.. Mississippi: Mississippi State University, 1995.
Znajdź pełny tekst źródłaStorey, Rita. Wool and cotton. North Mankato, Minn: Smart Apple Media, 2008.
Znajdź pełny tekst źródłaLow, It-Meng, Thamer Alomayri i Hasan Assaedi. Cotton and Flax Fibre-Reinforced Geopolymer Composites. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2281-6.
Pełny tekst źródłaLord, E. The origin and assessment of cotton fibre maturity. Wyd. 2. Manchester: International Institute for Cotton, Technical Research Division, 1988.
Znajdź pełny tekst źródłaCzęści książek na temat "Coton fiber"
Gooch, Jan W. "Cotton Fiber". W Encyclopedic Dictionary of Polymers, 174. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_2978.
Pełny tekst źródłaReddy, Bandaru S. "Colon Cancer: Future Directions". W Dietary Fiber, 543–52. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4613-2111-8_40.
Pełny tekst źródłaFadden, Kathleen. "The Ecology of the Colon". W Dietary Fiber, 101–18. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4613-2111-8_8.
Pełny tekst źródłaFrench, Alfred D., i Hee Jin Kim. "Cotton Fiber Structure". W Cotton Fiber: Physics, Chemistry and Biology, 13–39. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-00871-0_2.
Pełny tekst źródłaGuan, Xueying, i Z. Jeffrey Chen. "Cotton Fiber Genomics". W Seed Genomics, 203–16. Oxford, UK: Wiley-Blackwell, 2013. http://dx.doi.org/10.1002/9781118525524.ch11.
Pełny tekst źródłaKim, Hee Jin. "Cotton Fiber Biosynthesis". W Cotton Fiber: Physics, Chemistry and Biology, 133–50. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-00871-0_7.
Pełny tekst źródłaSiddiqui, Muhammad Qasim, Hua Wang i Hafeezullah Memon. "Cotton Fiber Testing". W Textile Science and Clothing Technology, 99–119. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-9169-3_6.
Pełny tekst źródłaHill, Michael J. "Bile Acids and Colon Cancer: Future Prospectives". W Dietary Fiber, 553–58. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4613-2111-8_41.
Pełny tekst źródłaKlurfeld, David M. "Insoluble Dietary Fiber and Experimental Colon Cancer". W Dietary Fiber, 403–15. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4613-0519-4_30.
Pełny tekst źródłaZieher, Carolyn. "Biochemistry of the Fiber". W Physiology of Cotton, 361–78. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-3195-2_32.
Pełny tekst źródłaStreszczenia konferencji na temat "Coton fiber"
Peel, Larry D., i Madhuri Lingala. "Testing and Simulation of Stress-Stiffening Extreme Poisson’s Ratio Twisted Fiber-Reinforced Elastomer Composites". W ASME 2008 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2008. http://dx.doi.org/10.1115/smasis2008-526.
Pełny tekst źródłaKawasaki, Yoshihiro, Eiichi Aoyama, Toshiki Hirogaki, Tetsurou Ise i Eiji Hara. "Strength Criteria for Designing Hybrid-Fiber Reinforced Plastic Gears". W ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-66394.
Pełny tekst źródłaSecareanu, Lucia-Oana, Irina-Mariana Sandulache, Elena-Cornelia Mitran, Mihaela-Cristina Lite, Adrian Alexandru Apostol, Ovidiu Iordache i Elena Perdum. "Protocol for identification and assessment of natural and synthetic textile fibers". W The 8th International Conference on Advanced Materials and Systems. INCDTP - Leather and Footwear Research Institute (ICPI), Bucharest, Romania, 2020. http://dx.doi.org/10.24264/icams-2020.v.12.
Pełny tekst źródłaEisenstein, Jessica, Peter Y. Wong i Caroline G. L. Cao. "Development of an Endoscopic Fiber Optic Shape Tracker". W ASME 2010 5th Frontiers in Biomedical Devices Conference. American Society of Mechanical Engineers, 2010. http://dx.doi.org/10.1115/biomed2010-32032.
Pełny tekst źródłaLi, Teng, Xianfa Fang, Decheng Wang, Jinkui Feng i Binbin Zhang. "The study on friction test between cotton fiber, cotton ,cotton seed and steel surface". W 2017 Spokane, Washington July 16 - July 19, 2017. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2017. http://dx.doi.org/10.13031/aim.201701305.
Pełny tekst źródłaVince P Schielack III, Ruixiu Sui, J A Thomasson, Eric Hequet i Christine Morgan. "Harvester-Based Cotton Fiber Quality Sensor". W 2009 Reno, Nevada, June 21 - June 24, 2009. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2009. http://dx.doi.org/10.13031/2013.28043.
Pełny tekst źródłaDivakara, S., A. R. Niranjana, G. N. Siddaraju, R. Somashekar, Alka B. Garg, R. Mittal i R. Mukhopadhyay. "Stacking Faults in Cotton Fibers". W SOLID STATE PHYSICS, PROCEEDINGS OF THE 55TH DAE SOLID STATE PHYSICS SYMPOSIUM 2010. AIP, 2011. http://dx.doi.org/10.1063/1.3605955.
Pełny tekst źródłaGavalis, Robb M., Hua Xing, Peter Y. Wong, Lothar Lilge i Caroline G. L. Cao. "Endoscope Shape-Tracker Based on Embedded Fluorescent Dyes in an Optical Fiber". W ASME 2008 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2008. http://dx.doi.org/10.1115/sbc2008-192809.
Pełny tekst źródłaStančić, Mladen, Branka Ružičić, Đorđe Vujčić, Dragana Grujić, Miroslav Dragić i Bojan Janković. "Influence of inkjet print parameters on thermal resistance of printed knitwears". W 10th International Symposium on Graphic Engineering and Design. University of Novi Sad, Faculty of technical sciences, Department of graphic engineering and design,, 2020. http://dx.doi.org/10.24867/grid-2020-p49.
Pełny tekst źródłaAncelotti, Antonio, Aureliano Ribeiro, Bruna Rennó i Felipe Eloy. "Experimental dynamic evaluation of cotton fiber composite material". W 24th ABCM International Congress of Mechanical Engineering. ABCM, 2017. http://dx.doi.org/10.26678/abcm.cobem2017.cob17-1544.
Pełny tekst źródła