Artykuły w czasopismach na temat „Couche de diffusion (GDL)”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Couche de diffusion (GDL)”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Ji, Sheng Zheng, Zhuang Song, and Ying He. "Study on Diffusion Characteristics of Liquid Water in Gas Diffusion Layer by Lattice Boltzmann Method." International Journal of Engineering Research in Africa 71 (September 18, 2024): 1–16. http://dx.doi.org/10.4028/p-3yl8ms.
Pełny tekst źródłaAlishahi, Marzieh, Claire McCague, and Majid Bahrami. "Evaluation of Porous Media Gas Diffusion Models for PEMFC Applications." ECS Meeting Abstracts MA2022-01, no. 39 (2022): 1762. http://dx.doi.org/10.1149/ma2022-01391762mtgabs.
Pełny tekst źródłaRingström, Marcus, Rakel Wreland Lindström, Göran Lindbergh, and Henrik Ekström. "Experimental Characterization of Anisotropic Mechanical and Thermal Properties of Gas Diffusion Layers." ECS Meeting Abstracts MA2022-01, no. 37 (2022): 1645. http://dx.doi.org/10.1149/ma2022-01371645mtgabs.
Pełny tekst źródłaBerger, Anne, Yen-Chun Chen, Jacqueline Gatzemeier, Felix N. Buechi, and Hubert Andreas Gasteiger. "Importance of Directed Water Removal: Intruding Microporous Layer Material into the Gas Diffusion Layer Substrate." ECS Meeting Abstracts MA2023-02, no. 37 (2023): 1766. http://dx.doi.org/10.1149/ma2023-02371766mtgabs.
Pełny tekst źródłaYang, Mingyang, Aimin Du, Jinling Liu, and Sichuan Xu. "Lattice Boltzmann Method Study on Liquid Water Dynamic inside Gas Diffusion Layer with Porosity Distribution." World Electric Vehicle Journal 12, no. 3 (2021): 133. http://dx.doi.org/10.3390/wevj12030133.
Pełny tekst źródłaYoshikawa, Makoto, Kotaro Yamamoto, Zhiyun Noda, et al. "Self-Supporting Microporous Layer for Polymer Electrolyte Fuel Cells." ECS Transactions 112, no. 4 (2023): 83–91. http://dx.doi.org/10.1149/11204.0083ecst.
Pełny tekst źródłaYilmaz, Abdurrahman, Siddharth Komini Babu, Ugur Pasaogullari, Jacob S. Spendelow, and Rangachary Mukundan. "Optimization of the Cathode Gas Diffusion Layer Also Matters for Water Electrolyzers." ECS Meeting Abstracts MA2022-02, no. 40 (2022): 1491. http://dx.doi.org/10.1149/ma2022-02401491mtgabs.
Pełny tekst źródłaBerger, Anne, Michael Striednig, Christoph Simon та Hubert A. Gasteiger. "Determination of the τ/ε-Ratio for Gas Diffusion Substrates and Microporous Layers in a Proton Exchange Membrane Fuel Cell". Journal of The Electrochemical Society 172, № 1 (2025): 014508. https://doi.org/10.1149/1945-7111/ada63e.
Pełny tekst źródłaJung, Sung Yong, Jooyoung Park, Hanwook Park, Hwanyeong Oh, and Jong Woon Moon. "Degradation Effect of Gas Diffusion Layer on Water Transport in Polymer Electrolyte Membrane Fuel Cell." ECS Meeting Abstracts MA2022-01, no. 41 (2022): 2426. http://dx.doi.org/10.1149/ma2022-01412426mtgabs.
Pełny tekst źródłaTruong, Van Men, Ngoc Bich Duong, and Hsiharng Yang. "Effect of Gas Diffusion Layer Thickness on the Performance of Anion Exchange Membrane Fuel Cells." Processes 9, no. 4 (2021): 718. http://dx.doi.org/10.3390/pr9040718.
Pełny tekst źródłaSyarif, Nirwan, Dedi Rohendi, Ade Dwi Nanda, M. Try Sandi, and Delima Sukma Wati Br Sihombing. "Gas diffusion layer from Binchotan carbon and its electrochemical properties for supporting electrocatalyst in fuel cell." AIMS Energy 10, no. 2 (2022): 292–305. http://dx.doi.org/10.3934/energy.2022016.
Pełny tekst źródłaKabouchi, Kaoutar, and Mohamed Karim Ettouhami. "Proton Exchange Membrane Fuel Cells: Effects of Gas Diffusion Layer Porosity Differences." E3S Web of Conferences 601 (2025): 00080. https://doi.org/10.1051/e3sconf/202560100080.
Pełny tekst źródłaQitong, Shi, Qianqian Wang, Feng Cong, and Pingwen Ming. "(Digital Presentation) A Constant Deformation Modulus for the Simulation of Gas Diffusion Layer." ECS Meeting Abstracts MA2022-01, no. 41 (2022): 2385. http://dx.doi.org/10.1149/ma2022-01412385mtgabs.
Pełny tekst źródłaQitong, Shi, Feng Cong, and Pingwen Ming. "(Digital Presentation) A Constant Deformation Modulus for the Simulation of Gas Diffusion Layer." ECS Meeting Abstracts MA2022-02, no. 40 (2022): 1494. http://dx.doi.org/10.1149/ma2022-02401494mtgabs.
Pełny tekst źródłaZhou, Ke, Tianya Li, Yufen Han, Jihao Wang, Jia Chen, and Kejian Wang. "Optimizing the hydrophobicity of GDL to improve the fuel cell performance." RSC Advances 11, no. 4 (2021): 2010–19. http://dx.doi.org/10.1039/d0ra09658j.
Pełny tekst źródłaMassaglia, Giulia, Eve Verpoorten, Candido F. Pirri, and Marzia Quaglio. "Nanostructured gas diffusion layer to improve direct oxygen reduction reaction in Air-Cathode Single-Chamber Microbial Fuel Cells." E3S Web of Conferences 334 (2022): 04012. http://dx.doi.org/10.1051/e3sconf/202233404012.
Pełny tekst źródłaAtifi, A., K. El Bikri, and M. Ettouhami. "Numerical simulation of Effect of Contact Pressure on Gas Diffusion Layers deformation of a PEM Fuel Cell." MATEC Web of Conferences 286 (2019): 09006. http://dx.doi.org/10.1051/matecconf/201928609006.
Pełny tekst źródłaSong, Dong Kun, Jung Soo Kim, Seung Heon Lee, et al. "Numerical Analysis of Patterned Gas Diffusion Layers with Hydrophilic Surface in Proton Exchange Membrane Fuel Cell." ECS Meeting Abstracts MA2024-02, no. 67 (2024): 4702. https://doi.org/10.1149/ma2024-02674702mtgabs.
Pełny tekst źródłaOuerghemmi, Marwa, Christophe Carral, and Patrice Mele. "Experimental study of gas diffusion layers nonlinear orthotropic behavior." E3S Web of Conferences 334 (2022): 04020. http://dx.doi.org/10.1051/e3sconf/202233404020.
Pełny tekst źródłaNishida, Kosuke. "Numerical Simulation of Local Entropy Generation of Oxygen Transport in Cathode Diffusion Media of PEFC." ECS Transactions 112, no. 4 (2023): 43–48. http://dx.doi.org/10.1149/11204.0043ecst.
Pełny tekst źródłaMunekata, Toshihisa, Takaji Inamuro, and Shi-aki Hyodo. "Gas Transport Properties in Gas Diffusion Layers: A Lattice Boltzmann Study." Communications in Computational Physics 9, no. 5 (2011): 1335–46. http://dx.doi.org/10.4208/cicp.301009.161210s.
Pełny tekst źródłaTateyama, Shota, Takahiro Suzuki, Mitsunori Nasu, et al. "Effect of GDL Structure and Operating Conditions on PEMFC Performance and Liquid Water Removal." ECS Transactions 114, no. 5 (2024): 367–75. http://dx.doi.org/10.1149/11405.0367ecst.
Pełny tekst źródłaTateyama, Shota, Takahiro Suzuki, Mitsunori Nasu, et al. "Effect of GDL Structure and Operating Conditions on PEMFC Performance and Liquid Water Removal." ECS Transactions 114, no. 5 (2024): 353–61. http://dx.doi.org/10.1149/11405.0353ecst.
Pełny tekst źródłaRaciti, David, Trevor Michael Braun, Brian Tackett, et al. "Self-Supporting Ag Nanowire Mat Electrodes on PTFE Gas Diffusion Layers for Electrochemical Conversion of CO2 to CO." ECS Meeting Abstracts MA2022-02, no. 40 (2022): 1489. http://dx.doi.org/10.1149/ma2022-02401489mtgabs.
Pełny tekst źródłaEdjokola, Joel Mata, Viktor Hacker, and Merit Bodner. "Investigation of Gas Diffusion Layer Degradation in Polymer Electrolyte Fuel Cell Via Chemical Oxidation." ECS Transactions 112, no. 4 (2023): 265–71. http://dx.doi.org/10.1149/11204.0265ecst.
Pełny tekst źródłaDuque, Luis, Antonio Molinero, Juan Carlos Oller, et al. "Study of Mass Transport in the Anode of a Proton Exchange Membrane Fuel Cell with a New Hydrogen Flow-Rate Modulation Technique." ChemElectroChem 11, no. 14 (2024): e202400100. https://doi.org/10.1002/celc.202400100.
Pełny tekst źródłaMohammadi, Amin, Majid Bahrami, Claire McCague, Esmaeil Navaei Alvar, and Kim Pascal. "Gas Diffusivity of PEM Fuel Cells Gas Diffusion Layer: Experimental Measurement and Modeling." ECS Meeting Abstracts MA2024-02, no. 44 (2024): 2972. https://doi.org/10.1149/ma2024-02442972mtgabs.
Pełny tekst źródłaSaka, Kenan, Mehmet Fatih Orhan, and Ahmed T. Hamada. "Design and Analysis of Gas Diffusion Layers in a Proton Exchange Membrane Fuel Cell." Coatings 13, no. 1 (2022): 2. http://dx.doi.org/10.3390/coatings13010002.
Pełny tekst źródłaZhao, Xinyue, Qiuwan Shen, Zhaoyang Zhang, Hongda Li, and Shian Li. "Influence of Key Parameters of GDL on Performance of Anion Exchange Membrane Electrolytic Cells." Eng 6, no. 6 (2025): 111. https://doi.org/10.3390/eng6060111.
Pełny tekst źródłaIndayaningsih, Nanik, Dedi Priadi, Anne Zulfia, and Suprapedi. "Analysis of Coconut Carbon Fibers for Gas Diffusion Layer Material." Key Engineering Materials 462-463 (January 2011): 937–42. http://dx.doi.org/10.4028/www.scientific.net/kem.462-463.937.
Pełny tekst źródłaBerger, Anne, та Hubert Andreas Gasteiger. "Determination of the τ/ε-Ratio for Gas Diffusion Substrates and Microporous Layers in an Operating Fuel Cell". ECS Meeting Abstracts MA2022-01, № 35 (2022): 1456. http://dx.doi.org/10.1149/ma2022-01351456mtgabs.
Pełny tekst źródłaYasin, Nor Hafizah Yasin, and Wan Zaireen Nisa Yahya. "IMMOBILISATION OF COPPER (I) OXIDE/ZINC OXIDE NANOPARTICLES ON THE GAS DIFFUSION LAYER FOR CO2 REDUCTION REACTION APPLICATION." Malaysian Journal of Science 43, sp1 (2024): 8–14. http://dx.doi.org/10.22452/mjs.vol43sp1.2.
Pełny tekst źródłaHussain, Javid, Dae-Kyeom Kim, Sangmin Park, et al. "Experimental and Computational Study of Optimized Gas Diffusion Layer for Polymer Electrolyte Membrane Electrolyzer." Materials 16, no. 13 (2023): 4554. http://dx.doi.org/10.3390/ma16134554.
Pełny tekst źródłaLee, Haksung, Chan-Woong Choi, Ki-Weon Kang, and Ji-Won Jin. "A Study on the Evaluation of Effective Properties of Randomly Distributed Gas Diffusion Layer (GDL) Tissues with Different Compression Ratios." Applied Sciences 10, no. 21 (2020): 7407. http://dx.doi.org/10.3390/app10217407.
Pełny tekst źródłaZhu, Yingli, Xiaojian Zhang, Jianyu Li, and Gary Qi. "Three-dimensional graphene as gas diffusion layer for micro direct methanol fuel cell." International Journal of Modern Physics B 32, no. 12 (2018): 1850145. http://dx.doi.org/10.1142/s021797921850145x.
Pełny tekst źródłaYang, Danan, Himani Garg, Steven B. Beale, and Martin Andersson. "Numerical Reconstruction of Proton Exchange Membrane Fuel Cell Gas Diffusion Layers." ECS Meeting Abstracts MA2023-02, no. 37 (2023): 1718. http://dx.doi.org/10.1149/ma2023-02371718mtgabs.
Pełny tekst źródłaPeng, Ming, Enci Dong, Li Chen, Yu Wang, and Wen-Quan Tao. "Effects of Cathode Gas Diffusion Layer Configuration on the Performance of Open Cathode Air-Cooled Polymer Electrolyte Membrane Fuel Cell." Energies 15, no. 17 (2022): 6262. http://dx.doi.org/10.3390/en15176262.
Pełny tekst źródłaBerger, Anne, Yen-Chun Chen, Jacqueline Gatzemeier, Thomas J. Schmidt, Felix N. Büchi, and Hubert A. Gasteiger. "Analysis of the MPL/GDL Interface: Impact of MPL Intrusion into the GDL Substrate." Journal of The Electrochemical Society 170, no. 9 (2023): 094509. http://dx.doi.org/10.1149/1945-7111/acfa26.
Pełny tekst źródłaWang, Hao, Guogang Yang, Shian Li, Qiuwan Shen, Yue Li, and Renjie Wang. "Pore-Scale Modeling of Liquid Water Transport in Compressed Gas Diffusion Layer of Proton Exchange Membrane Fuel Cells Considering Fiber Anisotropy." Membranes 13, no. 6 (2023): 559. http://dx.doi.org/10.3390/membranes13060559.
Pełny tekst źródłaPourrahmani, Hossein, Hamza Moussaoui, Milad Hosseini, et al. "Fluid Flow in the Gas Diffusion Layer Using Computational Fluid Dynamics and Microscopy Techniques." ECS Meeting Abstracts MA2023-01, no. 24 (2023): 1595. http://dx.doi.org/10.1149/ma2023-01241595mtgabs.
Pełny tekst źródłaGuo, Hui, Lubing Chen, Sara Adeeba Ismail, et al. "Gas Diffusion Layer for Proton Exchange Membrane Fuel Cells: A Review." Materials 15, no. 24 (2022): 8800. http://dx.doi.org/10.3390/ma15248800.
Pełny tekst źródłaSeo, Sangwon, Kwangyeop Jang, Jongwoo Park, and Dongjin Kim. "Synthesis of PTFE based Air Cathode for Metal Air Battery." E3S Web of Conferences 233 (2021): 01005. http://dx.doi.org/10.1051/e3sconf/202123301005.
Pełny tekst źródłaYan, Song, Mingyang Yang, Chuanyu Sun, and Sichuan Xu. "Liquid Water Characteristics in the Compressed Gradient Porosity Gas Diffusion Layer of Proton Exchange Membrane Fuel Cells Using the Lattice Boltzmann Method." Energies 16, no. 16 (2023): 6010. http://dx.doi.org/10.3390/en16166010.
Pełny tekst źródłaZHENG, QIAN, JINTU FAN, XIANGPENG LI, and CHAO XU. "FRACTAL ANALYSIS OF GAS FLOW THROUGH THE GAS DIFFUSION LAYER IN PROTON EXCHANGE MEMBRANE FUEL CELLS WITH ROUGHENED MICRO-CHANNELS." Fractals 26, no. 06 (2018): 1850099. http://dx.doi.org/10.1142/s0218348x18500998.
Pełny tekst źródłaMoriyama, Koji, and Takaji Inamuro. "Lattice Boltzmann Simulations of Water Transport from the Gas Diffusion Layer to the Gas Channel in PEFC." Communications in Computational Physics 9, no. 5 (2011): 1206–18. http://dx.doi.org/10.4208/cicp.311009.081110s.
Pełny tekst źródłaKulikovsky, Andrei. "Analytical Impedance of Oxygen Transport in the Channel and Gas Diffusion Layer of a PEM Fuel Cell." Journal of The Electrochemical Society 168, no. 11 (2021): 114520. http://dx.doi.org/10.1149/1945-7111/ac3a2d.
Pełny tekst źródłaHalter, Jonathan, John A. MacDonald, Fabusuyi Akindele Aroge, et al. "The Role of Thermal Conductivity on Liquid Water Distribution in GDLs." ECS Meeting Abstracts MA2023-02, no. 37 (2023): 1786. http://dx.doi.org/10.1149/ma2023-02371786mtgabs.
Pełny tekst źródłaInoue, Tatsuya, Daiki Sakai, Kazuyuki Hirota, et al. "Study on Performance Stability Improvement of Polymer Electrolyte Fuel Cells with Interdigitated Gas Flow Channels on a Gas Diffusion Layer." ECS Meeting Abstracts MA2024-02, no. 46 (2024): 3207. https://doi.org/10.1149/ma2024-02463207mtgabs.
Pełny tekst źródłaLee, So Yeon, Chi-Yeong Ahn, and Hyungwon Shim. "An Experimental Study on the Correlation between Characteristics of Gas Diffusion Layer and Performance Depending on Relative Humidity Variation in Proton Exchange Membrane Fuel Cell." ECS Meeting Abstracts MA2023-02, no. 38 (2023): 1874. http://dx.doi.org/10.1149/ma2023-02381874mtgabs.
Pełny tekst źródłaAnyanwu, Ikechukwu S., Zhiqiang Niu, Daokuan Jiao, Aezid-Ul-Hassan Najmi, Zhi Liu, and Kui Jiao. "Liquid Water Transport Behavior at GDL-Channel Interface of a Wave-Like Channel." Energies 13, no. 11 (2020): 2726. http://dx.doi.org/10.3390/en13112726.
Pełny tekst źródła