Gotowa bibliografia na temat „Crop disease estimation”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Crop disease estimation”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Crop disease estimation"
Shahi, Tej Bahadur, Cheng-Yuan Xu, Arjun Neupane i William Guo. "Recent Advances in Crop Disease Detection Using UAV and Deep Learning Techniques". Remote Sensing 15, nr 9 (6.05.2023): 2450. http://dx.doi.org/10.3390/rs15092450.
Pełny tekst źródłaPatil, Rutuja Rajendra, Sumit Kumar, Shwetambari Chiwhane, Ruchi Rani i Sanjeev Kumar Pippal. "An Artificial-Intelligence-Based Novel Rice Grade Model for Severity Estimation of Rice Diseases". Agriculture 13, nr 1 (23.12.2022): 47. http://dx.doi.org/10.3390/agriculture13010047.
Pełny tekst źródłati, Shru, i Nidhi Seth. "Estimation of Fungus/Disease in Tomato Crop using K-Means Segmentation". International Journal of Computer Trends and Technology 11, nr 2 (25.05.2014): 58–60. http://dx.doi.org/10.14445/22312803/ijctt-v11p112.
Pełny tekst źródłaZhao, Hengqian, Chenghai Yang, Wei Guo, Lifu Zhang i Dongyan Zhang. "Automatic Estimation of Crop Disease Severity Levels Based on Vegetation Index Normalization". Remote Sensing 12, nr 12 (15.06.2020): 1930. http://dx.doi.org/10.3390/rs12121930.
Pełny tekst źródłaChen, Shuo, Kefei Zhang, Yindi Zhao, Yaqin Sun, Wei Ban, Yu Chen, Huifu Zhuang, Xuewei Zhang, Jinxiang Liu i Tao Yang. "An Approach for Rice Bacterial Leaf Streak Disease Segmentation and Disease Severity Estimation". Agriculture 11, nr 5 (7.05.2021): 420. http://dx.doi.org/10.3390/agriculture11050420.
Pełny tekst źródłaShahi, Tej Bahadur, Cheng-Yuan Xu, Arjun Neupane, Dayle Fresser, Dan O’Connor, Graeme Wright i William Guo. "A cooperative scheme for late leaf spot estimation in peanut using UAV multispectral images". PLOS ONE 18, nr 3 (27.03.2023): e0282486. http://dx.doi.org/10.1371/journal.pone.0282486.
Pełny tekst źródłaS, Jeevanraja, Vishnu Vardhan Reddy A, Ashok Reddy S i Hari Krishna Reddy V. "Deep Learning for Crop Yield Forcasting in Agriculture Using Multilayer Perceptron and Convolutional Neural Networks". Journal of Soft Computing Paradigm 6, nr 4 (styczeń 2025): 401–11. https://doi.org/10.36548/jscp.2024.4.006.
Pełny tekst źródłaDoggalli, Gangadhara, Santhoshinii E, Manojkumar H G, Mitali Srivastava, Ganesh H S, Amruta Barigal, Anithaa V, Arfa Ameen i Ritama Kundu. "Drone Technology for Crop Disease Resistance: Innovations and Challenges". Journal of Scientific Research and Reports 30, nr 8 (23.07.2024): 174–80. http://dx.doi.org/10.9734/jsrr/2024/v30i82237.
Pełny tekst źródłaPfender, W. F., i S. C. Alderman. "Regional Development of Orchardgrass Choke and Estimation of Seed Yield Loss". Plant Disease 90, nr 2 (luty 2006): 240–44. http://dx.doi.org/10.1094/pd-90-0240.
Pełny tekst źródłaYang, Xiucong. "Identification and Monitoring of Crop Pests and Diseases Based on Remote Sensing Technology". Transactions on Environment, Energy and Earth Sciences 3 (26.11.2024): 130–36. https://doi.org/10.62051/btdqj764.
Pełny tekst źródłaRozprawy doktorskie na temat "Crop disease estimation"
Maas, Bea. "Birds, bats and arthropods in tropical agroforestry landscapes: Functional diversity, multitrophic interactions and crop yield". Doctoral thesis, 2013. http://hdl.handle.net/11858/00-1735-0000-0022-5E77-5.
Pełny tekst źródłaKsiążki na temat "Crop disease estimation"
Study on the estimation of seed, feed, and post-harvest wastage of foodgrain crops in Bangladesh. Dhaka, Bangladesh: Uniconsult International, 1991.
Znajdź pełny tekst źródłaKeshav, Satish, i Alexandra Kent. Chronic diarrhoea. Redaktorzy Patrick Davey i David Sprigings. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780199568741.003.0029.
Pełny tekst źródłaCzęści książek na temat "Crop disease estimation"
Wyawahare, Medha, Jyoti Madake, Agnibha Sarkar, Anish Parkhe, Archis Khuspe i Tejas Gaikwad. "Crop-Weed Detection, Depth Estimation and Disease Diagnosis Using YOLO and Darknet for Agribot: A Precision Farming Robot". W Algorithms for Intelligent Systems, 57–69. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-4626-6_5.
Pełny tekst źródłaBado, Souleymane, Fatemeh Maghuly, Vitor Varzea i Margit Laimer. "Mutagenesis of in vitro explants of Coffea spp. to induce fungal resistance." W Mutation breeding, genetic diversity and crop adaptation to climate change, 344–52. Wallingford: CABI, 2021. http://dx.doi.org/10.1079/9781789249095.0036.
Pełny tekst źródłaPrajapati, Jigna Bhupendra, Akash Kumar, Jhilam Pramanik, Bhupendra G. Prajapati i Kavita Saini. "Edge AI for Real-Time and Intelligent Agriculture". W Applying Drone Technologies and Robotics for Agricultural Sustainability, 215–44. IGI Global, 2023. http://dx.doi.org/10.4018/978-1-6684-6413-7.ch014.
Pełny tekst źródłaUsha, S. Gandhimathi Alias. "Harnessing Environmental Intelligence to Enhance Crop Management by Leveraging Deep Learning Technique". W Advances in Environmental Engineering and Green Technologies, 106–23. IGI Global, 2023. http://dx.doi.org/10.4018/978-1-6684-9975-7.ch006.
Pełny tekst źródłaTripathi, Smrati, Prasen Jeet, Rijwan Khan i Akhilesh Kumar Srivastava. "Conventional to Modern Agriculture Using Artificial Intelligence". W Infrastructure Possibilities and Human-Centered Approaches With Industry 5.0, 142–61. IGI Global, 2024. http://dx.doi.org/10.4018/979-8-3693-0782-3.ch009.
Pełny tekst źródłaRoy, Pankaj, Mrutyunjay Padhiary, Azmirul Hoque, Bhabashankar Sahu, Dipak Roy i Kundan Kumar. "Machine Learning for Precision Agriculture and Crop Yield Optimization". W Advances in Computational Intelligence and Robotics, 189–234. IGI Global, 2025. https://doi.org/10.4018/979-8-3693-9208-9.ch007.
Pełny tekst źródłaRaju, K. Srujan, K. Suneetha, K. Reddy Madhavi, Kondra Pranitha, J. Avanija i B. Narendra Kumar Rao. "Enhancing Smart Agriculture Applications Utilizing Deep Learning Models and Computer Vision Techniques". W Agriculture and Aquaculture Applications of Biosensors and Bioelectronics, 238–52. IGI Global, 2024. http://dx.doi.org/10.4018/979-8-3693-2069-3.ch012.
Pełny tekst źródłaBashir, Muhammad Jawad, i Rafia Mumtaz. "A Review of Advances in Computer Vision, Multi/Hyperspectral Imaging, UAVs, and Agri-Bots". W Advances in Computational Intelligence and Robotics, 149–90. IGI Global, 2025. https://doi.org/10.4018/979-8-3693-6255-6.ch006.
Pełny tekst źródłaGhosh, Sukanta, Shubhanshu Arya i Amar Singh. "Plant Disease Detection Using Machine Learning Approaches". W Advances in Medical Technologies and Clinical Practice, 122–30. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-7188-0.ch009.
Pełny tekst źródłaShahi, Tej Bahadur, Ram Bahadur Khadka i Arjun Neupane. "Applicability of UAV in Crop Health Monitoring Using Machine Learning Techniques". W Applications of Machine Learning in UAV Networks, 246–62. IGI Global, 2024. http://dx.doi.org/10.4018/979-8-3693-0578-2.ch010.
Pełny tekst źródłaStreszczenia konferencji na temat "Crop disease estimation"
P, Raghul, Kavitha A, Daniel Madan Raja S, Rathiya R, Krithik C.S i Pranesh K.R. "Multi-Task Learning for Tomato Crop Disease Detection and Severity Estimation using CNN Framework". W 2024 International Conference on Advances in Data Engineering and Intelligent Computing Systems (ADICS). IEEE, 2024. http://dx.doi.org/10.1109/adics58448.2024.10533592.
Pełny tekst źródłaA, Nithiya, Navina N, Thoshitha D, Suvetha R i Thirilosana J. "Precision Agriculture Advancements: A Comprehensive Integrated System for Disease Prediction And Crop Yield Estimation Using Image Analysis And Environmental Data". W 2024 2nd International Conference on Artificial Intelligence and Machine Learning Applications Theme: Healthcare and Internet of Things (AIMLA). IEEE, 2024. http://dx.doi.org/10.1109/aimla59606.2024.10531324.
Pełny tekst źródłaШпанев, А. М. "THE USE OF UNMANNED AERIAL VEHICLES AT MONITORING OF PHYTOSANITARY STATE OF AGROBIOCENOSES". W МАТЕРИАЛЫ II Всероссийской научной конференции с международным участием «ПРИМЕНЕНИЕ СРЕДСТВ ДИСТАНЦИОННОГО ЗОНДИРОВАНИЯ ЗЕМЛИ В СЕЛЬСКОМ ХОЗЯЙСТВЕ» Санкт-Петербург, 26–28 сентября 2018 г. Crossref, 2018. http://dx.doi.org/10.25695/agrophysica.2018.2.18892.
Pełny tekst źródłaRaporty organizacyjne na temat "Crop disease estimation"
Eneroth, Hanna, Hanna Karlsson Potter i Elin Röös. Environmental impact of coffee, tea and cocoa – data collection for a consumer guide for plant-based foods. Department of Energy and Technology, Swedish University of Agricultural Sciences, 2022. http://dx.doi.org/10.54612/a.2n3m2d2pjl.
Pełny tekst źródła