Gotowa bibliografia na temat „Cross-domain fault diagnosis”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Cross-domain fault diagnosis”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Cross-domain fault diagnosis"
Wang, Xiaodong, Feng Liu, and Dongdong Zhao. "Cross-Machine Fault Diagnosis with Semi-Supervised Discriminative Adversarial Domain Adaptation." Sensors 20, no. 13 (2020): 3753. http://dx.doi.org/10.3390/s20133753.
Pełny tekst źródłaZhang, Yongchao, Zhaohui Ren, and Shihua Zhou. "A New Deep Convolutional Domain Adaptation Network for Bearing Fault Diagnosis under Different Working Conditions." Shock and Vibration 2020 (July 24, 2020): 1–14. http://dx.doi.org/10.1155/2020/8850976.
Pełny tekst źródłaSun, Dong, Xudong Yang, and Hai Yang. "A Domain Adaptation Meta-Relation Network for Knowledge Transfer from Human-Induced Faults to Natural Faults in Bearing Fault Diagnosis." Sensors 25, no. 7 (2025): 2254. https://doi.org/10.3390/s25072254.
Pełny tekst źródłaYang, Dan, Tianyu Ma, and Zhipeng Li. "A multi-source domain adaption intelligent fault diagnosis method based on asymmetric adversarial training." Measurement Science and Technology 36, no. 3 (2025): 036123. https://doi.org/10.1088/1361-6501/adb2b1.
Pełny tekst źródłaChang, Hong-Chan, Ren-Ge Liu, Chen-Cheng Li, and Cheng-Chien Kuo. "Fault Diagnosis of Induction Motors under Limited Data for across Loading by Residual VGG-Based Siamese Network." Applied Sciences 14, no. 19 (2024): 8949. http://dx.doi.org/10.3390/app14198949.
Pełny tekst źródłaMeng, Yu, Jianping Xuan, Long Xu, and Jie Liu. "Dynamic Reweighted Domain Adaption for Cross-Domain Bearing Fault Diagnosis." Machines 10, no. 4 (2022): 245. http://dx.doi.org/10.3390/machines10040245.
Pełny tekst źródłaLi, Dan, Yudong Xu, Yuxun Zhou, Chao Gou, and See-Kiong Ng. "Cross Domain Data Generation for Smart Building Fault Detection and Diagnosis." Mathematics 10, no. 21 (2022): 3970. http://dx.doi.org/10.3390/math10213970.
Pełny tekst źródłaWang, Yuanfei, Shihao Li, Feng Jia, and Jianjun Shen. "Multi-Domain Weighted Transfer Adversarial Network for the Cross-Domain Intelligent Fault Diagnosis of Bearings." Machines 10, no. 5 (2022): 326. http://dx.doi.org/10.3390/machines10050326.
Pełny tekst źródłaZhang, Long, Hao Zhang, Qian Xiao, et al. "Numerical Model Driving Multi-Domain Information Transfer Method for Bearing Fault Diagnosis." Sensors 22, no. 24 (2022): 9759. http://dx.doi.org/10.3390/s22249759.
Pełny tekst źródłaLiu, Zhuoxun, Chengqian Zhao, Zhe Yang, Jianyu Long, and Chuan Li. "Cross-domain fault diagnosis for rolling element bearings without fault data in target domain." IET Conference Proceedings 2025, no. 10 (2025): 236–40. https://doi.org/10.1049/icp.2025.2363.
Pełny tekst źródłaRozprawy doktorskie na temat "Cross-domain fault diagnosis"
Ainapure, Abhijeet Narhar. "Application and Performance Enhancement of Intelligent Cross-Domain Fault Diagnosis in Rotating Machinery." University of Cincinnati / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1623164772153736.
Pełny tekst źródłaFernandes, Montesuma Eduardo. "Multi-Source Domain Adaptation through Wasserstein Barycenters." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASG045.
Pełny tekst źródłaCzęści książek na temat "Cross-domain fault diagnosis"
Lu, Weikai, Jian Chen, Hao Zheng, et al. "Domain Adversarial Interaction Network for Cross-Domain Fault Diagnosis." In Machine Learning for Cyber Security. Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-20099-1_37.
Pełny tekst źródłaPing, Mingtian, Dechang Pi, Zhiwei Chen, and Junlong Wang. "Cross-Domain Bearing Fault Diagnosis Method Using Hierarchical Pseudo Labels." In Neural Information Processing. Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-8076-5_3.
Pełny tekst źródłaHuang, Zhe, Qing Lan, Mingxuan Li, Zhihui Wen, and Wangpeng He. "A Multi-scale Feature Adaptation ConvNeXt for Cross-Domain Fault Diagnosis." In Communications in Computer and Information Science. Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-7007-6_24.
Pełny tekst źródłaWang, Rui, Weiguo Huang, Xiao Zhang, Mingkuan Shi, Chuancang Ding, and Zhongkui Zhu. "Cross-domain machinery fault diagnosis under unseen working conditions based on multiple auxiliary classifiers." In Equipment Intelligent Operation and Maintenance. CRC Press, 2025. https://doi.org/10.1201/9781003470076-82.
Pełny tekst źródłaShao, Haidong, Jian Lin, Zhishan Min, Jingjie Luo, and Haoxuan Dou. "Scalable Metric Meta-learning for Cross-domain Fault Diagnosis of Planetary Gearbox Using Few Samples." In Lecture Notes in Electrical Engineering. Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-6901-0_89.
Pełny tekst źródłaZhang, Fan, Pei Lai, Qichen Wang, Tianrui Li, and Weihua Zhang. "TCRNN: A Cross-domain Knowledge Transfer Acoustic Bearing Fault Diagnosis Method for Data Unbalance Issue." In Proceedings of the UNIfied Conference of DAMAS, IncoME and TEPEN Conferences (UNIfied 2023). Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-49421-5_76.
Pełny tekst źródłaQin, Ruoshi, and Jinsong Zhao. "Cross-domain Fault Diagnosis for Chemical Processes through Dynamic Adversarial Adaptation Network." In Computer Aided Chemical Engineering. Elsevier, 2023. http://dx.doi.org/10.1016/b978-0-443-15274-0.50139-6.
Pełny tekst źródłaStreszczenia konferencji na temat "Cross-domain fault diagnosis"
Zhong, Jiajun, and Peng Lin. "Dynamic Regulation Domain Adaptation Network for Cross Domain Bearing Fault Diagnosis." In 2024 7th International Conference on Pattern Recognition and Artificial Intelligence (PRAI). IEEE, 2024. https://doi.org/10.1109/prai62207.2024.10827083.
Pełny tekst źródłaLiu, Zhengyu, Tong Sun, Juan Xu, Tong Wu, Yewei Wang, and Rui Xu. "CFNet: Cross-Domain Bearing Fault Diagnosis Under Different Operating Conditions." In 2024 International Conference on Sensing, Measurement & Data Analytics in the era of Artificial Intelligence (ICSMD). IEEE, 2024. https://doi.org/10.1109/icsmd64214.2024.10920617.
Pełny tekst źródłaZhang, Jinyuan, Boyuan Yang, and Ruonan Liu. "Dynamic Confusion-Aware Correlation Network for Cross-Domain Fault Diagnosis." In IECON 2024 - 50th Annual Conference of the IEEE Industrial Electronics Society. IEEE, 2024. https://doi.org/10.1109/iecon55916.2024.10905878.
Pełny tekst źródłaWang, Li, Yiping Gao, Xinyu Li, and Liang Gao. "Regularized Optimal Transport Enabled Few-Shot Cross-Domain Fault Diagnosis." In 2024 Global Reliability and Prognostics and Health Management Conference (PHM-Beijing). IEEE, 2024. https://doi.org/10.1109/phm-beijing63284.2024.10874716.
Pełny tekst źródłaZhao, Yue, Guorong Fan, Yuxing Cao, Yong Yang, Wenhua Gao, and Zengshou Dong. "A cross domain deep learning method for rolling bearing fault diagnosis." In 2024 43rd Chinese Control Conference (CCC). IEEE, 2024. http://dx.doi.org/10.23919/ccc63176.2024.10662230.
Pełny tekst źródłaChen, Zixu, Wennian Yu, Qing Ni, and Jinchen Ji. "Learnable Topology Enhanced Heterogeneous Network for Unbalanced Cross-Domain Fault Diagnosis." In 2024 IEEE International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC). IEEE, 2024. http://dx.doi.org/10.1109/sdpc62810.2024.10707709.
Pełny tekst źródłaLi, Jingde, Changqing Shen, Juanjuan Shi, Dong Wang, Weiguo Huang, and Zhongkui Zhu. "Adversarial Domain Bias Removal Network for Cross-condition Bearing Fault Diagnosis." In 2024 International Conference on Sensing, Measurement & Data Analytics in the era of Artificial Intelligence (ICSMD). IEEE, 2024. https://doi.org/10.1109/icsmd64214.2024.10920512.
Pełny tekst źródłaZhu, Xiyao, Yurui Zhu, Xin Ma, Jinglin Zhou, and Dazi Li. "Encoder-Enhanced Graph Convolutional Network for Cross-Domain Mechanical Fault Diagnosis." In 2025 IEEE 14th Data Driven Control and Learning Systems (DDCLS). IEEE, 2025. https://doi.org/10.1109/ddcls66240.2025.11065744.
Pełny tekst źródłaUsman, Muhammad, Tenta Komatsu, Kyaw Myo Htun, Zhiqi Liu, and Aryel Beck. "Benchmarking Sensor Modalities with Few-shot Domain Adaptation for Cross-Domain Fault Diagnosis*." In 2024 IEEE 20th International Conference on Automation Science and Engineering (CASE). IEEE, 2024. http://dx.doi.org/10.1109/case59546.2024.10711623.
Pełny tekst źródłaLiu, Qingke, Quan Zhang, Yaqi Yu, and Xiaowen Ma. "Adversarial Multi-Target Domain Adaptation with Multi-Scale Convolutional Neural Networks for Cross-Domain Fault Diagnosis." In 2025 5th International Conference on Sensors and Information Technology (ICSI). IEEE, 2025. https://doi.org/10.1109/icsi64877.2025.11009887.
Pełny tekst źródła