Artykuły w czasopismach na temat „Cross-domain fault diagnosis”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Cross-domain fault diagnosis”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Wang, Xiaodong, Feng Liu, and Dongdong Zhao. "Cross-Machine Fault Diagnosis with Semi-Supervised Discriminative Adversarial Domain Adaptation." Sensors 20, no. 13 (2020): 3753. http://dx.doi.org/10.3390/s20133753.
Pełny tekst źródłaZhang, Yongchao, Zhaohui Ren, and Shihua Zhou. "A New Deep Convolutional Domain Adaptation Network for Bearing Fault Diagnosis under Different Working Conditions." Shock and Vibration 2020 (July 24, 2020): 1–14. http://dx.doi.org/10.1155/2020/8850976.
Pełny tekst źródłaSun, Dong, Xudong Yang, and Hai Yang. "A Domain Adaptation Meta-Relation Network for Knowledge Transfer from Human-Induced Faults to Natural Faults in Bearing Fault Diagnosis." Sensors 25, no. 7 (2025): 2254. https://doi.org/10.3390/s25072254.
Pełny tekst źródłaYang, Dan, Tianyu Ma, and Zhipeng Li. "A multi-source domain adaption intelligent fault diagnosis method based on asymmetric adversarial training." Measurement Science and Technology 36, no. 3 (2025): 036123. https://doi.org/10.1088/1361-6501/adb2b1.
Pełny tekst źródłaChang, Hong-Chan, Ren-Ge Liu, Chen-Cheng Li, and Cheng-Chien Kuo. "Fault Diagnosis of Induction Motors under Limited Data for across Loading by Residual VGG-Based Siamese Network." Applied Sciences 14, no. 19 (2024): 8949. http://dx.doi.org/10.3390/app14198949.
Pełny tekst źródłaMeng, Yu, Jianping Xuan, Long Xu, and Jie Liu. "Dynamic Reweighted Domain Adaption for Cross-Domain Bearing Fault Diagnosis." Machines 10, no. 4 (2022): 245. http://dx.doi.org/10.3390/machines10040245.
Pełny tekst źródłaLi, Dan, Yudong Xu, Yuxun Zhou, Chao Gou, and See-Kiong Ng. "Cross Domain Data Generation for Smart Building Fault Detection and Diagnosis." Mathematics 10, no. 21 (2022): 3970. http://dx.doi.org/10.3390/math10213970.
Pełny tekst źródłaWang, Yuanfei, Shihao Li, Feng Jia, and Jianjun Shen. "Multi-Domain Weighted Transfer Adversarial Network for the Cross-Domain Intelligent Fault Diagnosis of Bearings." Machines 10, no. 5 (2022): 326. http://dx.doi.org/10.3390/machines10050326.
Pełny tekst źródłaZhang, Long, Hao Zhang, Qian Xiao, et al. "Numerical Model Driving Multi-Domain Information Transfer Method for Bearing Fault Diagnosis." Sensors 22, no. 24 (2022): 9759. http://dx.doi.org/10.3390/s22249759.
Pełny tekst źródłaLiu, Zhuoxun, Chengqian Zhao, Zhe Yang, Jianyu Long, and Chuan Li. "Cross-domain fault diagnosis for rolling element bearings without fault data in target domain." IET Conference Proceedings 2025, no. 10 (2025): 236–40. https://doi.org/10.1049/icp.2025.2363.
Pełny tekst źródłaJang, Gye-Bong, and Sung-Bae Cho. "Cross-Domain Adaptation Using Domain Interpolation for Rotating Machinery Fault Diagnosis." IEEE Transactions on Instrumentation and Measurement 71 (2022): 1–17. http://dx.doi.org/10.1109/tim.2022.3204093.
Pełny tekst źródłaZhang, Hongpeng, Xinran Wang, Cunyou Zhang, et al. "Dynamic Condition Adversarial Adaptation for Fault Diagnosis of Wind Turbine Gearbox." Sensors 23, no. 23 (2023): 9368. http://dx.doi.org/10.3390/s23239368.
Pełny tekst źródłaShang, Qianming, Tianyao Jin, and Mingsheng Chen. "A New Cross-Domain Motor Fault Diagnosis Method Based on Bimodal Inputs." Journal of Marine Science and Engineering 12, no. 8 (2024): 1304. http://dx.doi.org/10.3390/jmse12081304.
Pełny tekst źródłaWang, Huaqing, Zhitao Xu, Xingwei Tong, and Liuyang Song. "Cross-Domain Open Set Fault Diagnosis Based on Weighted Domain Adaptation with Double Classifiers." Sensors 23, no. 4 (2023): 2137. http://dx.doi.org/10.3390/s23042137.
Pełny tekst źródłaBai, Jie, Xuan Liu, Bingjie Dou, et al. "A Fault Diagnosis Method for Pumped Storage Unit Stator Based on Improved STFT-SVDD Hybrid Algorithm." Processes 12, no. 10 (2024): 2126. http://dx.doi.org/10.3390/pr12102126.
Pełny tekst źródłaLiu, Guokai, Weiming Shen, Liang Gao, and Andrew Kusiak. "Automated broad transfer learning for cross-domain fault diagnosis." Journal of Manufacturing Systems 66 (February 2023): 27–41. http://dx.doi.org/10.1016/j.jmsy.2022.11.003.
Pełny tekst źródłaLiu, Siyuan, Jinying Huang, Peiyu Han, Zhenfang Fan, and Jiancheng Ma. "Cross-Domain Fault Diagnosis of Rotating Machinery Under Time-Varying Rotational Speed and Asymmetric Domain Label Condition." Sensors 25, no. 9 (2025): 2818. https://doi.org/10.3390/s25092818.
Pełny tekst źródłaZhang, Chao, Peng Du, Dingyu Zhou, Zhijie Dong, Shilie He, and Zhenwei Zhou. "Fault Diagnosis of Low-Noise Amplifier Circuit Based on Fusion Domain Adaptation Method." Actuators 13, no. 9 (2024): 379. http://dx.doi.org/10.3390/act13090379.
Pełny tekst źródłaWu, Miaoling, Jun Zhang, Peidong Xu, et al. "Bearing Fault Diagnosis for Cross-Condition Scenarios Under Data Scarcity Based on Transformer Transfer Learning Network." Electronics 14, no. 3 (2025): 515. https://doi.org/10.3390/electronics14030515.
Pełny tekst źródłaChen, Zhuyun, Guolin He, Jipu Li, Yixiao Liao, Konstantinos Gryllias, and Weihua Li. "Domain Adversarial Transfer Network for Cross-Domain Fault Diagnosis of Rotary Machinery." IEEE Transactions on Instrumentation and Measurement 69, no. 11 (2020): 8702–12. http://dx.doi.org/10.1109/tim.2020.2995441.
Pełny tekst źródłaLiu, Fuqiang, Wenlong Deng, Chaoqun Duan, Yi Qin, Jun Luo, and Huayan Pu. "Duplex adversarial domain discriminative network for cross-domain partial transfer fault diagnosis." Knowledge-Based Systems 279 (November 2023): 110960. http://dx.doi.org/10.1016/j.knosys.2023.110960.
Pełny tekst źródłaLiu, Fuzheng, Faye Zhang, Xiangyi Geng, et al. "Structural discrepancy and domain adversarial fusion network for cross-domain fault diagnosis." Advanced Engineering Informatics 58 (October 2023): 102217. http://dx.doi.org/10.1016/j.aei.2023.102217.
Pełny tekst źródłaZhou, Hongdi, Tao Huang, Xixing Li, and Fei Zhong. "Cross-domain intelligent fault diagnosis of rolling bearing based on distance metric transfer learning." Advances in Mechanical Engineering 14, no. 11 (2022): 168781322211357. http://dx.doi.org/10.1177/16878132221135740.
Pełny tekst źródłaQin, Y. X., Y. Hong, J. Y. Long, Z. Yang, Y. W. Huang, and C. Li. "Attitude data-based deep transfer capsule network for intelligent fault diagnosis of delta 3D printers." Journal of Physics: Conference Series 2184, no. 1 (2022): 012017. http://dx.doi.org/10.1088/1742-6596/2184/1/012017.
Pełny tekst źródłaFeiyan Fan, Feiyan Fan, Jiazhen Hou Feiyan Fan, and Tanghuai Fan Jiazhen Hou. "Fault Diagnosis under Varying Working Conditions with Domain Adversarial Capsule Networks." 電腦學刊 33, no. 3 (2022): 135–46. http://dx.doi.org/10.53106/199115992022063303011.
Pełny tekst źródłaZou, Yingyong, Wenzhuo Zhao, Tao Liu, Xingkui Zhang, and Yaochen Shi. "Research on High-Speed Train Bearing Fault Diagnosis Method Based on Domain-Adversarial Transfer Learning." Applied Sciences 14, no. 19 (2024): 8666. http://dx.doi.org/10.3390/app14198666.
Pełny tekst źródłaZhao, Chao, and Weiming Shen. "Dual adversarial network for cross-domain open set fault diagnosis." Reliability Engineering & System Safety 221 (May 2022): 108358. http://dx.doi.org/10.1016/j.ress.2022.108358.
Pełny tekst źródłaZheng, Huailiang, Rixin Wang, Yuantao Yang, et al. "Cross-Domain Fault Diagnosis Using Knowledge Transfer Strategy: A Review." IEEE Access 7 (2019): 129260–90. http://dx.doi.org/10.1109/access.2019.2939876.
Pełny tekst źródłaChao, Ko-Chieh, Chuan-Bi Chou, and Ching-Hung Lee. "Online Domain Adaptation for Rolling Bearings Fault Diagnosis with Imbalanced Cross-Domain Data." Sensors 22, no. 12 (2022): 4540. http://dx.doi.org/10.3390/s22124540.
Pełny tekst źródłaXie, Fengyun, Gang Li, Qiuyang Fan, Qian Xiao, and Shengtong Zhou. "Optimizing and Analyzing Performance of Motor Fault Diagnosis Algorithms for Autonomous Vehicles via Cross-Domain Data Fusion." Processes 11, no. 10 (2023): 2862. http://dx.doi.org/10.3390/pr11102862.
Pełny tekst źródłaKim, Taeyun, and Jangbom Chai. "Pre-Processing Method to Improve Cross-Domain Fault Diagnosis for Bearing." Sensors 21, no. 15 (2021): 4970. http://dx.doi.org/10.3390/s21154970.
Pełny tekst źródłaZhang, Yizong, Shaobo Li, Ansi Zhang, Chuanjiang Li, and Ling Qiu. "A Novel Bearing Fault Diagnosis Method Based on Few-Shot Transfer Learning across Different Datasets." Entropy 24, no. 9 (2022): 1295. http://dx.doi.org/10.3390/e24091295.
Pełny tekst źródłaFu, Bo, Li Xu, Yi Quan, Chaoshun Li, Xilin Zhao, and Yuxiang Zhu. "A cross domain processing deep transfer learning network for rotating machinery fault diagnosis." Measurement Science and Technology 36, no. 4 (2025): 046132. https://doi.org/10.1088/1361-6501/adc324.
Pełny tekst źródłaZhang, Yongchao, Zhaohui Ren, Ke Feng, Kun Yu, Michael Beer, and Zheng Liu. "Universal source-free domain adaptation method for cross-domain fault diagnosis of machines." Mechanical Systems and Signal Processing 191 (May 2023): 110159. http://dx.doi.org/10.1016/j.ymssp.2023.110159.
Pełny tekst źródłaWang, Yu, Jie Gao, Wei Wang, Xu Yang, and Jinsong Du. "Curriculum learning-based domain generalization for cross-domain fault diagnosis with category shift." Mechanical Systems and Signal Processing 212 (April 2024): 111295. http://dx.doi.org/10.1016/j.ymssp.2024.111295.
Pełny tekst źródłaShang, Zhiwu, Xiaolong Du, Cailu Pan, Fei Liu, and Ziyu Wang. "Joint domain transfer elasticity metric network for cross-domain small sample fault diagnosis." Neurocomputing 650 (October 2025): 130936. https://doi.org/10.1016/j.neucom.2025.130936.
Pełny tekst źródłaZheng, Huailiang, Yuantao Yang, Jiancheng Yin, Yuqing Li, Rixin Wang, and Minqiang Xu. "Deep Domain Generalization Combining A Priori Diagnosis Knowledge Toward Cross-Domain Fault Diagnosis of Rolling Bearing." IEEE Transactions on Instrumentation and Measurement 70 (2021): 1–11. http://dx.doi.org/10.1109/tim.2020.3016068.
Pełny tekst źródłaZhao, Juanru, Mei Yuan, Yiwen Cui, and Jin Cui. "A Cross-Machine Intelligent Fault Diagnosis Method with Small and Imbalanced Data Based on the ResFCN Deep Transfer Learning Model." Sensors 25, no. 4 (2025): 1189. https://doi.org/10.3390/s25041189.
Pełny tekst źródłaYan, Tao, Jianchun Guo, Yuan Zhou, Lixia Zhu, Bo Fang, and Jiawei Xiang. "Numerical Simulation Data-Aided Domain-Adaptive Generalization Method for Fault Diagnosis." Sensors 25, no. 11 (2025): 3482. https://doi.org/10.3390/s25113482.
Pełny tekst źródłaLiu, Xiaorong, Zhonghan Chen, Dongfeng Hu, and Liansong Zong. "A Novel Framework Based on Complementary Views for Fault Diagnosis with Cross-Attention Mechanisms." Electronics 14, no. 5 (2025): 886. https://doi.org/10.3390/electronics14050886.
Pełny tekst źródłaXu, Shu, Jian Ma, and Dengwei Song. "Open-set Federated Adversarial Domain Adaptation Based Cross-domain Fault Diagnosis." Measurement Science and Technology, July 13, 2023. http://dx.doi.org/10.1088/1361-6501/ace734.
Pełny tekst źródłaJia, Feng, Yuanfei Wang, Jianjun Shen, Lifei Hao, and Zhaoyu Jiang. "Stepwise feature norm network with adaptive weighting for open set cross-domain intelligent fault diagnosis of bearings." Measurement Science and Technology, February 9, 2024. http://dx.doi.org/10.1088/1361-6501/ad282f.
Pełny tekst źródłaWang, Cheng, Bingyou Cheng, and Lili Deng. "An Adaptive Thresholding Approach for Open Set Fault Diagnosis." Measurement Science and Technology, November 22, 2024. http://dx.doi.org/10.1088/1361-6501/ad9625.
Pełny tekst źródłaLi, Can, Guangbin Wang, Shubiao Zhao, Zhixian Zhong, and Ying Lv. "Cross-domain manifold structure preservation for transferable and cross-machine fault diagnosis." Journal of Vibroengineering, August 22, 2024. http://dx.doi.org/10.21595/jve.2024.24067.
Pełny tekst źródłaJia, Feng, Xiang Xu, Yuanfei Wang, and Jianjun Shen. "A novel source-free domain adaptation network for intelligent diagnosis of bearings under unknown faults." Measurement Science and Technology, March 28, 2025. https://doi.org/10.1088/1361-6501/adc6a6.
Pełny tekst źródłaMao, Xiaodong. "Cross domain fault diagnosis method based on MLP-mixer network." Journal of Measurements in Engineering, October 30, 2023. http://dx.doi.org/10.21595/jme.2023.23460.
Pełny tekst źródłayefeng, zhang, Tang Hesheng, and yan ren. "A Three-Stage Cross Domain Intelligent Fault Diagnosis Method for Multiple New Faults." Measurement Science and Technology, November 8, 2024. http://dx.doi.org/10.1088/1361-6501/ad903f.
Pełny tekst źródłaWang, Pei, Jie Liu, Jianzhong Zhou, Ran Duan, and Wei Jiang. "Cross-domain fault diagnosis of rotating machinery based on graph feature extraction." Measurement Science and Technology, November 9, 2022. http://dx.doi.org/10.1088/1361-6501/aca16f.
Pełny tekst źródłaLiao, Yixiao, Ruyi Huang, Jipu Li, Zhuyun Chen, and Weihua Li. "Dynamic Distribution Adaptation Based Transfer Network for Cross Domain Bearing Fault Diagnosis." Chinese Journal of Mechanical Engineering 34, no. 1 (2021). http://dx.doi.org/10.1186/s10033-021-00566-3.
Pełny tekst źródłaGong, Fengjin, Ping Ma, Nini Wang, Hongli Zhang, Cong Wang, and Xinkai Li. "Cross-device fault diagnosis of rolling bearings using domain generalization and dynamic model." Journal of Vibration and Control, June 1, 2024. http://dx.doi.org/10.1177/10775463241256253.
Pełny tekst źródła