Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Crowded lipid membrane biophysics.

Artykuły w czasopismach na temat „Crowded lipid membrane biophysics”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Crowded lipid membrane biophysics”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Erwin, Nelli, Satyajit Patra, Mridula Dwivedi, Katrin Weise, and Roland Winter. "Influence of isoform-specific Ras lipidation motifs on protein partitioning and dynamics in model membrane systems of various complexity." Biological Chemistry 398, no. 5-6 (2017): 547–63. http://dx.doi.org/10.1515/hsz-2016-0289.

Pełny tekst źródła
Streszczenie:
Abstract The partitioning of the lipidated signaling proteins N-Ras and K-Ras4B into various membrane systems, ranging from single-component fluid bilayers, binary fluid mixtures, heterogeneous raft model membranes up to complex native-like lipid mixtures (GPMVs) in the absence and presence of integral membrane proteins have been explored in the last decade in a combined chemical-biological and biophysical approach. These studies have revealed pronounced isoform-specific differences regarding the lateral distribution in membranes and formation of protein-rich membrane domains. In this context,
Style APA, Harvard, Vancouver, ISO itp.
2

Arnarez, C., S. J. Marrink, and X. Periole. "Molecular mechanism of cardiolipin-mediated assembly of respiratory chain supercomplexes." Chemical Science 7, no. 7 (2016): 4435–43. http://dx.doi.org/10.1039/c5sc04664e.

Pełny tekst źródła
Streszczenie:
We reveal the molecular mechanism by which cardiolipin glues respiratory complexes into supercomplexes. This mechanism defines a new biophysico-chemical pathway of protein–lipid interplay, with broad general implications for the dynamic organization of crowded cell membranes.
Style APA, Harvard, Vancouver, ISO itp.
3

Kessler, Michael S., and Susan Gillmor. "Lipid Membrane Phase Dynamics." Biophysical Journal 104, no. 2 (2013): 248a. http://dx.doi.org/10.1016/j.bpj.2012.11.1398.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Nawrocki, Grzegorz, Wonpil Im, Yuji Sugita, and Michael Feig. "Clustering and dynamics of crowded proteins near membranes and their influence on membrane bending." Proceedings of the National Academy of Sciences 116, no. 49 (2019): 24562–67. http://dx.doi.org/10.1073/pnas.1910771116.

Pełny tekst źródła
Streszczenie:
Atomistic molecular dynamics simulations of concentrated protein solutions in the presence of a phospholipid bilayer are presented to gain insights into the dynamics and interactions at the cytosol–membrane interface. The main finding is that proteins that are not known to specifically interact with membranes are preferentially excluded from the membrane, leaving a depletion zone near the membrane surface. As a consequence, effective protein concentrations increase, leading to increased protein contacts and clustering, whereas protein diffusion becomes faster near the membrane for proteins tha
Style APA, Harvard, Vancouver, ISO itp.
5

Fischer, Wolfgang B. "Assembling Within The Lipid Membrane: Viral Membrane Proteins." Biophysical Journal 96, no. 3 (2009): 338a—339a. http://dx.doi.org/10.1016/j.bpj.2008.12.3823.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Mitchison-Field, Lorna MY, and Brittany J. Belin. "Bacterial lipid biophysics and membrane organization." Current Opinion in Microbiology 74 (August 2023): 102315. http://dx.doi.org/10.1016/j.mib.2023.102315.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Ho, Chian Sing, Nawal K. Khadka, Fengyu She, Jianfeng Cai, and Jianjun Pan. "Polyglutamine aggregates impair lipid membrane integrity and enhance lipid membrane rigidity." Biochimica et Biophysica Acta (BBA) - Biomembranes 1858, no. 4 (2016): 661–70. http://dx.doi.org/10.1016/j.bbamem.2016.01.016.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Wang, Hongyin, Kandice R. Levental, Joseph H. Lorent, Adhvikaa A. Revathi, and Ilya Levental. "Lipid scrambling facilitates membrane vesiculation through decreasing membrane stiffness." Biophysical Journal 122, no. 3 (2023): 22a—23a. http://dx.doi.org/10.1016/j.bpj.2022.11.347.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Hoopes, Matthew I., Roland Faller, and Marjorie L. Longo. "Membrane Curvature Modeling and Lipid Organization in Supported Lipid Bilayers." Biophysical Journal 98, no. 3 (2010): 78a—79a. http://dx.doi.org/10.1016/j.bpj.2009.12.445.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Sodt, Alexander J., Olivier Soubias, Klaus Gawrisch, and Richard W. Pastor. "Lipid-Lipid Coupling to Membrane Curvature by Simulation and NMR." Biophysical Journal 110, no. 3 (2016): 243a. http://dx.doi.org/10.1016/j.bpj.2015.11.1340.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Ericsson, Maria, Victoria von Saucken, Andrew J. Newman та ін. "Crowded organelles, lipid accumulation, and abnormal membrane tubulation in cellular models of enhanced α-synuclein membrane interaction". Brain Research 1758 (травень 2021): 147349. http://dx.doi.org/10.1016/j.brainres.2021.147349.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Duncan, Anna L., Heidi Koldsø, Tyler Reddy, Jean Helie, and Mark S. P. Sansom. "Lipid Composition Modulates Membrane Protein Clustering." Biophysical Journal 110, no. 3 (2016): 81a. http://dx.doi.org/10.1016/j.bpj.2015.11.499.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Sapp, Kayla, and Alexander J. Sodt. "Analyzing membrane mechanics and lipid dynamics using lateral lipid density fluctuations." Biophysical Journal 122, no. 3 (2023): 362a. http://dx.doi.org/10.1016/j.bpj.2022.11.2002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Snead, Wilton T., Wade F. Zeno, Grace Kago, et al. "BAR scaffolds drive membrane fission by crowding disordered domains." Journal of Cell Biology 218, no. 2 (2018): 664–82. http://dx.doi.org/10.1083/jcb.201807119.

Pełny tekst źródła
Streszczenie:
Cellular membranes are continuously remodeled. The crescent-shaped bin-amphiphysin-rvs (BAR) domains remodel membranes in multiple cellular pathways. Based on studies of isolated BAR domains in vitro, the current paradigm is that BAR domain–containing proteins polymerize into cylindrical scaffolds that stabilize lipid tubules. But in nature, proteins that contain BAR domains often also contain large intrinsically disordered regions. Using in vitro and live cell assays, here we show that full-length BAR domain–containing proteins, rather than stabilizing membrane tubules, are instead surprising
Style APA, Harvard, Vancouver, ISO itp.
15

Chawla, Udeep, Suchithranga M. D. C. Perera, Adam A. Wallace, James W. Lewis, Blake Mertz, and Michael F. Brown. "Membrane Bilayer Environment Influences Thermodynamics of Rhodopsin Membrane Protein-Lipid Interactions." Biophysical Journal 104, no. 2 (2013): 434a. http://dx.doi.org/10.1016/j.bpj.2012.11.2413.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Hwang, Hyeondo (Luke), Peter J. Chung, Alessandra Leong, and Ka Yee C. Lee. "Understanding How Alpha-Synuclein Modifies Steric Interactions of Silica Supported Lipid Bilayers in Crowded Environments." Biophysical Journal 116, no. 3 (2019): 509a. http://dx.doi.org/10.1016/j.bpj.2018.11.2745.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Cooke, Ira R., and Markus Deserno. "Coupling between Lipid Shape and Membrane Curvature." Biophysical Journal 91, no. 2 (2006): 487–95. http://dx.doi.org/10.1529/biophysj.105.078683.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Edidin, Michael. "Switching Sides: The Actin/Membrane Lipid Connection." Biophysical Journal 91, no. 11 (2006): 3963. http://dx.doi.org/10.1529/biophysj.106.094078.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Ho, C., and C. D. Stubbs. "Hydration at the membrane protein-lipid interface." Biophysical Journal 63, no. 4 (1992): 897–902. http://dx.doi.org/10.1016/s0006-3495(92)81671-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Camp, Philip, Jacek Biernat, Eckhard Mandelkow, Jaroslaw Majewski, and Eva Y. Chi. "Lipid-Membrane Mediated Tau Misfolding and Aggregation." Biophysical Journal 98, no. 3 (2010): 239a—240a. http://dx.doi.org/10.1016/j.bpj.2009.12.1300.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Ranganathan, Radha, and Jasmeet Singh. "Characterization of Membrane Bound Phospholipase-Lipid Complex." Biophysical Journal 98, no. 3 (2010): 448a—449a. http://dx.doi.org/10.1016/j.bpj.2009.12.2439.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Lai, Alex L., and David S. Cafiso. "Synaptotagmin Perturbs Lipid Structure of Membrane Bilayers." Biophysical Journal 98, no. 3 (2010): 483a. http://dx.doi.org/10.1016/j.bpj.2009.12.2629.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Rostovtseva, Tatiana K., Michael Weinrich, Meng-Yang Chen, Kely L. Sheldon, and Sergey M. Bezrukov. "Membrane Lipid Composition Regulates Tubulin-VDAC Interaction." Biophysical Journal 100, no. 3 (2011): 42a. http://dx.doi.org/10.1016/j.bpj.2010.12.429.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Last, Julie A., Tina A. Waggoner, and Darryl Y. Sasaki. "Lipid Membrane Reorganization Induced by Chemical Recognition." Biophysical Journal 81, no. 5 (2001): 2737–42. http://dx.doi.org/10.1016/s0006-3495(01)75916-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Ohki, Shinpei, and Yoichi Takato. "A Molecular Mechanism of Lipid Membrane Fusion." Biophysical Journal 104, no. 2 (2013): 92a. http://dx.doi.org/10.1016/j.bpj.2012.11.550.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Marte, Joseph A., Dalia Hassan, and Frank X. Vazquez. "Dynamin pH Domain Interactions with Lipid Membrane." Biophysical Journal 116, no. 3 (2019): 203a. http://dx.doi.org/10.1016/j.bpj.2018.11.1124.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Dietel, Lisa, Louma Kalie, and Heiko Heerklotz. "Lipid Scrambling Induced by Membrane-Active Substances." Biophysical Journal 119, no. 4 (2020): 767–79. http://dx.doi.org/10.1016/j.bpj.2020.07.004.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Izumi, Kayano, Keisuke Shimizu, and Ryuji Kawano. "Lipid Membrane Deformation Induced by Transmembrane Peptides." Biophysical Journal 118, no. 3 (2020): 231a. http://dx.doi.org/10.1016/j.bpj.2019.11.1368.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Disalvo, E. Anibal, A. Sebastian Rosa, Jimena P. Cejas, and María de los A. Frias. "Water as a Link between Membrane and Colloidal Theories for Cells." Molecules 27, no. 15 (2022): 4994. http://dx.doi.org/10.3390/molecules27154994.

Pełny tekst źródła
Streszczenie:
This review is an attempt to incorporate water as a structural and thermodynamic component of biomembranes. With this purpose, the consideration of the membrane interphase as a bidimensional hydrated polar head group solution, coupled to the hydrocarbon region allows for the reconciliation of two theories on cells in dispute today: one considering the membrane as an essential part in terms of compartmentalization, and another in which lipid membranes are not necessary and cells can be treated as a colloidal system. The criterium followed is to describe the membrane state as an open, non-autono
Style APA, Harvard, Vancouver, ISO itp.
30

Marassi, Francesca M. "NMR Structural Studies of Membrane Proteins in Lipid Micelles and Lipid Bilayers." Biophysical Journal 98, no. 3 (2010): 209a. http://dx.doi.org/10.1016/j.bpj.2009.12.1123.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Weber, Florian, Herbert Stangl, Taras Synch, Birgit Plochberger, and Erdinc Sezgin. "HDL-membrane-interactions are highly influenced by the target membrane-lipid composition." Biophysical Journal 122, no. 3 (2023): 222a. http://dx.doi.org/10.1016/j.bpj.2022.11.1320.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Mukhin, Sergei I., and Boris B. Kheyfets. "Inter-Domain Line Tension Induced by Hydrophobic Lipid Tails in a Lipid Membrane." Biophysical Journal 100, no. 3 (2011): 493a. http://dx.doi.org/10.1016/j.bpj.2010.12.2890.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Sandberg, Jesse, and Grace H. Brannigan. "Coronavirus Envelope Protein: Lipid Sensitivity and Membrane Bending." Biophysical Journal 120, no. 3 (2021): 227a. http://dx.doi.org/10.1016/j.bpj.2020.11.1513.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Nylander, Tommy, Viveka Alfredsson, Pierandrea Lo Nostro, and Barry Ninham. "Morphologies and structure of brain lipid membrane dispersions." Biophysical Journal 121, no. 3 (2022): 216a. http://dx.doi.org/10.1016/j.bpj.2021.11.1659.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Morgenstein, Lion, Merav Tsubary, Ayelet Atkins, Asaf Grupi, and Shimon Weiss. "Controlled membrane interactions by lipid coated quantum dots." Biophysical Journal 121, no. 3 (2022): 73a. http://dx.doi.org/10.1016/j.bpj.2021.11.2335.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Hager-Barnard, Elizabeth A., Benjamin D. Almquist, and Nicholas A. Melosh. "Lipid Membrane Penetration Forces from AFM Force Spectroscopy." Biophysical Journal 96, no. 3 (2009): 389a. http://dx.doi.org/10.1016/j.bpj.2008.12.2909.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Fiedler, Steven L., and Angela Violi. "Simulation of Nanoparticle Permeation through a Lipid Membrane." Biophysical Journal 99, no. 1 (2010): 144–52. http://dx.doi.org/10.1016/j.bpj.2010.03.039.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Heimburg, Thomas. "The Physics of Nerves and Lipid Membrane Channels." Biophysical Journal 100, no. 3 (2011): 4a. http://dx.doi.org/10.1016/j.bpj.2010.11.072.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Gopalakrishnan, Gopakumar, Patricia T. Yam, Isabelle Rouiller, David R. Colman, and R. Bruce Lennox. "Lipid Membrane Domains Promote In-Vitro Presynapse Formation." Biophysical Journal 100, no. 3 (2011): 507a. http://dx.doi.org/10.1016/j.bpj.2010.12.2966.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Kurad, Dieter, Gunnar Jeschke, and Derek Marsh. "Lipid Membrane Polarity Profiles by High-Field EPR." Biophysical Journal 85, no. 2 (2003): 1025–33. http://dx.doi.org/10.1016/s0006-3495(03)74541-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Goose, Joseph E., Matthieu Chavent, and Mark S. P. Sansom. "How Instantaneous Lipid Flows Influence Membrane Protein Diffusion." Biophysical Journal 104, no. 2 (2013): 426a. http://dx.doi.org/10.1016/j.bpj.2012.11.2372.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Maftouni, Negin, Mehryar Amininassab, and Mansour Vali. "Physical Properties of an Asymmetric Nanobio Lipid Membrane." Biophysical Journal 104, no. 2 (2013): 80a. http://dx.doi.org/10.1016/j.bpj.2012.11.485.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Kelley, Elizabeth G., Moritz P. K. Frewein, Georg Pabst, and Michihiro Nagao. "Nanoscale membrane dynamics in chain asymmetric lipid bilayers." Biophysical Journal 122, no. 3 (2023): 22a. http://dx.doi.org/10.1016/j.bpj.2022.11.346.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Kim, Siyoung. "Lipid backmapping and its application to membrane builder." Biophysical Journal 122, no. 3 (2023): 422a. http://dx.doi.org/10.1016/j.bpj.2022.11.2287.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Rachid Thiam, Abdou. "Regulation of Lipid Droplet Formation by Membrane Tension." Biophysical Journal 114, no. 3 (2018): 562a—563a. http://dx.doi.org/10.1016/j.bpj.2017.11.3076.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Amos, Sarah-Beth, Antreas C. Kalli, Jiye Shi, and Mark S. P. Sansom. "Multiscale Simulations of Membrane Recognition by Lipid Kinases." Biophysical Journal 114, no. 3 (2018): 613a. http://dx.doi.org/10.1016/j.bpj.2017.11.3753.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Li, Feng, R. Venkat Kalyana Sundaram, Jeff Coleman, Shyam S. Krishnakumar, Frederic Pincet, and James Rothman. "Munc13 Clusters Capture Vesicles to Lipid Bilayer Membrane." Biophysical Journal 118, no. 3 (2020): 344a. http://dx.doi.org/10.1016/j.bpj.2019.11.1990.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Munguía, Irene Jiménez, Arsenii Fedorov, Ivan Meshkov, Yuri Ermakov, Yulia Gorbunova, and Valerij Sokolov. "Adsorption and Permeation of Porphyrins through Lipid Membrane." Biophysical Journal 118, no. 3 (2020): 78a. http://dx.doi.org/10.1016/j.bpj.2019.11.598.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Drolle, Elizabeth, Norbert Kučerka, Youngjik Choi, John Katsaras, and Zoya Leonenko. "Melatonin Counteracts Cholesterol's Effects on Lipid Membrane Structure." Biophysical Journal 104, no. 2 (2013): 182a. http://dx.doi.org/10.1016/j.bpj.2012.11.1022.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Hagerty, Nicholas, Edwin Li, and Kalina Hristova. "Integration of Plasma Membrane in Supported Lipid Bilayers." Biophysical Journal 96, no. 3 (2009): 329a. http://dx.doi.org/10.1016/j.bpj.2008.12.1656.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!