Gotowa bibliografia na temat „Cryogenic oxygen storage”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Cryogenic oxygen storage”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Cryogenic oxygen storage"
Melag, Leena, M. Munir Sadiq, Kristina Konstas, Farnaz Zadehahmadi, Kiyonori Suzuki, and Matthew R. Hill. "Performance evaluation of CuBTC composites for room temperature oxygen storage." RSC Advances 10, no. 67 (2020): 40960–68. http://dx.doi.org/10.1039/d0ra07068h.
Pełny tekst źródłaHanak, Dawid, and Vasilije Manovic. "Techno-economic analysis of oxy-combustion coal-fired power plant with cryogenic oxygen storage." Applied Energy 191 (January 16, 2017): 193–203. https://doi.org/10.1016/j.apenergy.2017.01.049.
Pełny tekst źródłaPortillo, E., Luz M. Gallego Fernández, M. Cano, B. Alonso-Fariñas, and B. Navarrete. "Techno-Economic Comparison of Integration Options for an Oxygen Transport Membrane Unit into a Coal Oxy-Fired Circulating Fluidized Bed Power Plant." Membranes 12, no. 12 (2022): 1224. http://dx.doi.org/10.3390/membranes12121224.
Pełny tekst źródłaSwanger, A. M., R. Fernando, C. Mahony, R. Carro, and A. Harrison. "Cryogenic Modules for Synergistic O2 Generation and CO2 Retention in Closed-Circuit Escape Respirators." IOP Conference Series: Materials Science and Engineering 1301, no. 1 (2024): 012044. http://dx.doi.org/10.1088/1757-899x/1301/1/012044.
Pełny tekst źródłaBraverman, V. Ya, H. V. Zhuk, and B. K. Ilienko. "TECHNOLOGIES OF CRYOGENIC STORAGE OF ELECTRICITY FROM RENEWABLE SOURCES." Energy Technologies & Resource Saving, no. 4 (December 20, 2022): 45–50. http://dx.doi.org/10.33070/etars.4.2022.04.
Pełny tekst źródłaVoronetskiy, A. V. "Comparative analysis of operational indicators of air separation plants." Glavnyj mekhanik (Chief Mechanic), no. 3 (February 25, 2022): 188–202. http://dx.doi.org/10.33920/pro-2-2203-03.
Pełny tekst źródłaPhong, Cu Xuan, Nguyen Quoc Q., and Cu Xuan Cu Xuan P. "Early-Stage Analysis of Air Independent Propulsion Based on Fuel Cells for Small Submarines." Advances in Military Technology 17, no. 2 (2022): 457–69. http://dx.doi.org/10.3849/aimt.01744.
Pełny tekst źródłaKlebleev, T. I., and V. Yu Semenov. "Experimental Study of Heat Transfer in the Interwall Space of a Cryogenic Tank with Powder Insulation." Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering, no. 3 (146) (September 2023): 113–26. http://dx.doi.org/10.18698/0236-3941-2023-3-113-126.
Pełny tekst źródłaOrozco, Salvador, Cynthia L. Ramirez Zamora, Md Amzad Hossain, and Ahsan Choudhuri. "FEA-Based Thermo-Structural Modeling of Cryogenic Storage Tanks in Liquid Propulsion Systems." Aerospace 12, no. 6 (2025): 479. https://doi.org/10.3390/aerospace12060479.
Pełny tekst źródłaLiang, Wenqing, Zhiyong Shu, Fuming Lu, Yong Wang, Xiaohong Zheng, and Hua Qian. "Study on Interparticle Interaction Force Model to Correct Saturation Density of Real Cryogenic Fluid for LBM Simulation." Sustainability 14, no. 12 (2022): 7414. http://dx.doi.org/10.3390/su14127414.
Pełny tekst źródłaRozprawy doktorskie na temat "Cryogenic oxygen storage"
Ford, Mark. "Long term storage and usage of cryogenic propellants for a manned Mars mission." Thesis, Cranfield University, 1996. http://dspace.lib.cranfield.ac.uk/handle/1826/11405.
Pełny tekst źródłaKsiążki na temat "Cryogenic oxygen storage"
Timothy, Martin, Hodgson Ed, and United States. National Aeronautics and Space Administration., eds. Extended mobility unit subcritical liquid oxygen storage and supply system (EMU SLOSSS): Conceptual design study report. Martin Marietta, Civil Space and Communications Company, 1992.
Znajdź pełny tekst źródłaRivers, H. Kevin. Cyclic cryogenic thermal-mechanical testing of an X-33/RLV liquid oxygen tank concept. National Aeronautics and Space Administration, Langley Research Center, 1999.
Znajdź pełny tekst źródłaCenter, Langley Research, ed. Cyclic cryogenic thermal-mechanical testing of an X-33/RLV liquid oxygen tank concept. National Aeronautics and Space Administration, Langley Research Center, 1999.
Znajdź pełny tekst źródłaCenter, Langley Research, ed. Cyclic cryogenic thermal-mechanical testing of an X-33/RLV liquid oxygen tank concept. National Aeronautics and Space Administration, Langley Research Center, 1999.
Znajdź pełny tekst źródłaCenter, Langley Research, ed. Cyclic cryogenic thermal-mechanical testing of an X-33/RLV liquid oxygen tank concept. National Aeronautics and Space Administration, Langley Research Center, 1999.
Znajdź pełny tekst źródłaGeorge C. Marshall Space Flight Center., ed. STS propellant densification feasibility study data book. National Aeronautics and Space Administration, George C. Marshall Space Flight Center, 1994.
Znajdź pełny tekst źródłaCyclic cryogenic thermal-mechanical testing of an X-33/RLV liquid oxygen tank concept. National Aeronautics and Space Administration, Langley Research Center, 1999.
Znajdź pełny tekst źródłaSTS propellant densification feasibility study data book. National Aeronautics and Space Administration, George C. Marshall Space Flight Center, 1994.
Znajdź pełny tekst źródłaCzęści książek na temat "Cryogenic oxygen storage"
Dutta, Jojit, and Achintya Mukhopadhyay. "Thermodynamic Model of Storage and Discharge of Liquid Hydrogen and Oxygen in Pressure Vessels Under Cryogenic Conditions." In Lecture Notes in Mechanical Engineering. Springer Nature Singapore, 2024. https://doi.org/10.1007/978-981-97-7308-4_13.
Pełny tekst źródłaWhite, Guy K., and Philip J. Meeson. "Storage and handling of liquefied gases." In Experimental Techniques in Low-Temperature Physics. Oxford University PressOxford, 2002. http://dx.doi.org/10.1093/oso/9780198514282.003.0005.
Pełny tekst źródłaStreszczenia konferencji na temat "Cryogenic oxygen storage"
Rehman, Wajiha, Muhammad Farhan, and Fatima Rehman. "A Review of Cryogenics Applications for Power and Energy." In ASME 2020 Power Conference collocated with the 2020 International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/power2020-16911.
Pełny tekst źródłaSegado, M. A., C. L. Hannon, J. G. Brisson, and J. G. Weisend. "COLLINS CRYOCOOLER DESIGN FOR ZERO-BOIL-OFF STORAGE OF LIQUID HYDROGEN AND OXYGEN IN SPACE." In TRANSACTIONS OF THE CRYOGENIC ENGINEERING CONFERENCE—CEC: Advances in Cryogenic Engineering. AIP, 2010. http://dx.doi.org/10.1063/1.3422310.
Pełny tekst źródłaOverbeeke, Arend, Edward Hodgson, Heather L. Paul, Harold Gier, and Lawrence H. Gill. "Prototype Cryogenic Oxygen Storage and Delivery Subsystem for Advanced Spacesuits." In International Conference On Environmental Systems. SAE International, 2007. http://dx.doi.org/10.4271/2007-01-3276.
Pełny tekst źródłaZhou, Lei, J. S. Kapat, L. C. Chow, and S. Y. Lei. "Design of a High Performance Cryocooler for Propellant Liquefaction and Storage on Mars." In ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-1444.
Pełny tekst źródłaThibault, J.-P., C. Corre, L. Demeure, and S. Mer. "Thermodynamic Control Systems for Cryogenic Propellant Storage During Long Missions." In ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting collocated with the ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/fedsm2014-22217.
Pełny tekst źródłaMoore, J. Jeffrey, Owen Pryor, Ian Cormier, and Jeremy Fetvedt. "Oxygen Storage Incorporated Into Net Power and the Allam-Fetvedt Oxy-Fuel sCO2 Power Cycle – Technoeconomic Analysis." In ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/gt2022-82060.
Pełny tekst źródłaJu, Shuai, and Haifeng Zhang. "Langasite Cryogenic Pressure Sensor for Space Shuttle Fuel Tank Monitoring." In ASME 2025 Aerospace Structures, Structural Dynamics, and Materials Conference. American Society of Mechanical Engineers, 2025. https://doi.org/10.1115/ssdm2025-152552.
Pełny tekst źródłaShelby, Jason L., and Krishna Kota. "Design of a High-Effective Wavy Channel Heat Exchanger for Cryogenic Applications." In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-52833.
Pełny tekst źródłaNotardonato, W., G. Haddad, K. V. Krishna-Murty, J. Zhu, J. S. Kapat, and L. C. Chow. "Miniature Joule–Thomson (JT) Cryocoolers for Propellant Management." In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-61545.
Pełny tekst źródłaSander, Frank, Sebastian Foeste, and Roland Span. "Model of an Oxygen Transport Membrane for Coal Fired Power Cycles With CO2 Capture." In ASME Turbo Expo 2007: Power for Land, Sea, and Air. ASMEDC, 2007. http://dx.doi.org/10.1115/gt2007-27788.
Pełny tekst źródła