Artykuły w czasopismach na temat „CubeSat”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „CubeSat”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
De Leon, Michael B., Ulysses B. Ante, Madelene S. Velasco, et al. "3D-Printing for Cube Satellites (CubeSats): Philippines‘ Perspectives." Engineering Innovations 1 (March 25, 2022): 13–27. http://dx.doi.org/10.4028/p-35niy3.
Pełny tekst źródłaXu, Duo, Honghao Yue, Yong Zhao, et al. "Improved A* Algorithm for Path Planning Based on CubeSats In-Orbit Electromagnetic Transfer System." Aerospace 11, no. 5 (2024): 394. http://dx.doi.org/10.3390/aerospace11050394.
Pełny tekst źródłaŞanlı, Alper, Tuncay Yunus Erkeç, Melih Beceren, and Mehmet Furkan Kemallı. "Architecture of Stratosphere Rocket for Cubesats." Volume 04 Issue 01 vm04, is01 (2023): 14–22. http://dx.doi.org/10.23890/ijast.vm04is01.0102.
Pełny tekst źródłaMenchinelli, Alessandro, Francesca Ingiosi, Ludovico Pamphili, et al. "A Reliability Engineering Approach for Managing Risks in CubeSats." Aerospace 5, no. 4 (2018): 121. http://dx.doi.org/10.3390/aerospace5040121.
Pełny tekst źródłaSibanda, Matthew, and Robert Ryk van Zyl. "Practical electromagnetic compatibility studies of a CubeSat." Journal of Engineering, Design and Technology 14, no. 4 (2016): 770–80. http://dx.doi.org/10.1108/jedt-04-2014-0025.
Pełny tekst źródłaAlanazi, Abdulaziz, and Jeremy Straub. "Engineering Methodology for Student-Driven CubeSats." Aerospace 6, no. 5 (2019): 54. http://dx.doi.org/10.3390/aerospace6050054.
Pełny tekst źródłaLu, Sining, Panagiotis Ioannis Theoharis, Raad Raad, et al. "A Survey on CubeSat Missions and Their Antenna Designs." Electronics 11, no. 13 (2022): 2021. http://dx.doi.org/10.3390/electronics11132021.
Pełny tekst źródłaO O, Afolabi, Adediji A. T, Ewetumo T, and Adedayo K. D. "A Survey of Locally Available Subsystems for Cubesat Projects in Nigerian Market." IOSR Journal of Applied Physics 16, no. 6 (2024): 22–26. https://doi.org/10.9790/4861-1606012226.
Pełny tekst źródłaVillela, Thyrso, Cesar A. Costa, Alessandra M. Brandão, Fernando T. Bueno, and Rodrigo Leonardi. "Towards the Thousandth CubeSat: A Statistical Overview." International Journal of Aerospace Engineering 2019 (January 10, 2019): 1–13. http://dx.doi.org/10.1155/2019/5063145.
Pełny tekst źródłaSri, Ram Deepak Akella, and Srinivas Baswanth Pappula Sashendra. "Advancements in CubeSat development: Applications and structural analysis." i-manager's Journal on Structural Engineering 13, no. 2 (2024): 13. https://doi.org/10.26634/jste.13.2.21618.
Pełny tekst źródłaMeftah, Mustapha, Fabrice Boust, Philippe Keckhut, et al. "INSPIRE-SAT 7, a Second CubeSat to Measure the Earth’s Energy Budget and to Probe the Ionosphere." Remote Sensing 14, no. 1 (2022): 186. http://dx.doi.org/10.3390/rs14010186.
Pełny tekst źródłaCapovilla, Giorgio, Enrico Cestino, and Leonardo Reyneri. "Modular Multifunctional Composite Structure for CubeSat Applications: Embedded Battery Prototype Modal Analysis." Aerospace 10, no. 12 (2023): 1009. http://dx.doi.org/10.3390/aerospace10121009.
Pełny tekst źródłaBenson, Ilia, Adam Kaplan, James Flynn, and Sharlene Katz. "Fault-Tolerant and Deterministic Flight-Software System For a High Performance CubeSat." International Journal of Grid and High Performance Computing 9, no. 1 (2017): 92–104. http://dx.doi.org/10.4018/ijghpc.2017010108.
Pełny tekst źródłaBouzoukis, Konstantinos-Panagiotis, Georgios Moraitis, Vassilis Kostopoulos, and Vaios Lappas. "An Overview of CubeSat Missions and Applications." Aerospace 12, no. 6 (2025): 550. https://doi.org/10.3390/aerospace12060550.
Pełny tekst źródłaBenhmimou, Boutaina, Fouad Omari, Nancy Gupta, Khalid El Khadiri, Rachid Ahl Laamara, and Mohamed El Bakkali. "Air-Gap Reduction and Antenna Positioning of an X-Band Bow Tie Slot Antenna on 2U CubeSats." Journal of Applied Engineering and Technological Science (JAETS) 6, no. 1 (2024): 86–102. https://doi.org/10.37385/jaets.v6i1.6158.
Pełny tekst źródłaFerrer-Perez, J. A., D. Gaviria-Arcila, C. Romo-Fuentes, et al. "Introduction to thermal control design process for CubeSats in Mexico." Journal of Physics: Conference Series 2804, no. 1 (2024): 012011. http://dx.doi.org/10.1088/1742-6596/2804/1/012011.
Pełny tekst źródłaStesina, Fabrizio, Sabrina Corpino, and Daniele Calvi. "A Test Platform to Assess the Impact of Miniaturized Propulsion Systems." Aerospace 7, no. 11 (2020): 163. http://dx.doi.org/10.3390/aerospace7110163.
Pełny tekst źródłaVidal-Valladares, Matías G., and Marcos A. Díaz. "A Femto-Satellite Localization Method Based on TDOA and AOA Using Two CubeSats." Remote Sensing 14, no. 5 (2022): 1101. http://dx.doi.org/10.3390/rs14051101.
Pełny tekst źródłaZanette, Luca, Leonardo Reyneri, and Giuseppe Bruni. "Swarm system for CubeSats." Aircraft Engineering and Aerospace Technology 90, no. 2 (2018): 379–89. http://dx.doi.org/10.1108/aeat-07-2016-0119.
Pełny tekst źródłaPark, Yeon-Kyu, Geuk-Nam Kim, and Sang-Young Park. "Novel Structure and Thermal Design and Analysis for CubeSats in Formation Flying." Aerospace 8, no. 6 (2021): 150. http://dx.doi.org/10.3390/aerospace8060150.
Pełny tekst źródłaStesina, Fabrizio. "Validation of a Test Platform to Qualify Miniaturized Electric Propulsion Systems." Aerospace 6, no. 9 (2019): 99. http://dx.doi.org/10.3390/aerospace6090099.
Pełny tekst źródłaBradburn, John, Mustafa Aksoy, Lennox Apudo, Varvara Vukolov, Henry Ashley, and Dylan VanAllen. "ACCURACy: A Novel Calibration Framework for CubeSat Radiometer Constellations." Remote Sensing 17, no. 3 (2025): 486. https://doi.org/10.3390/rs17030486.
Pełny tekst źródłaZhao, Yong, Yuhao Zhang, Zeming Zhao, et al. "Simulation Analysis and Experimental Verification of the Transport Characteristics of a High-Volume CubeSat Storage Device." Aerospace 12, no. 6 (2025): 466. https://doi.org/10.3390/aerospace12060466.
Pełny tekst źródłaNakayama, Daisuke, Takashi Yamauchi, Hirokazu Masui, et al. "On-Orbit Experimental Result of a Non-Deployable 430-MHz-Band Antenna Using a 1U CubeSat Structure." Electronics 11, no. 7 (2022): 1163. http://dx.doi.org/10.3390/electronics11071163.
Pełny tekst źródłaGonzález-Rodríguez, Desiree, Pedro Orgeira-Crespo, Chantal Cappelletti, and Fernando Aguado-Agelet. "Methodology for CubeSat Debris Collision Avoidance Based on Its Active ADCS System." Applied Sciences 13, no. 22 (2023): 12388. http://dx.doi.org/10.3390/app132212388.
Pełny tekst źródłaChau, Vu Minh, and Hien Bich Vo. "Structural Dynamics Analysis of 3-U CubeSat." Applied Mechanics and Materials 894 (September 2019): 164–70. http://dx.doi.org/10.4028/www.scientific.net/amm.894.164.
Pełny tekst źródłaMelaku, Shimeles Demissie, and Hae-Dong Kim. "Optimization of Multi-Mission CubeSat Constellations with a Multi-Objective Genetic Algorithm." Remote Sensing 15, no. 6 (2023): 1572. http://dx.doi.org/10.3390/rs15061572.
Pełny tekst źródłaNayyar, Shivang, Sandeep Kumar, and Vikas Suhag. "Earthquake Signature Detection Using Cubesat Technology." Journal of Advance Research in Electrical & Electronics Engineering (ISSN: 2208-2395) 1, no. 2 (2014): 03–07. http://dx.doi.org/10.53555/nneee.v1i2.256.
Pełny tekst źródłaVishal S K, Hariharan S, and Vishnuprakash B. "Interplanetary CubeSat Networks: Challenges and Future Prospects in Deep Space Communication." Acceleron Aerospace Journal 4, no. 5 (2025): 1123–31. https://doi.org/10.61359/11.2106-2526.
Pełny tekst źródłaCapovilla, Giorgio, Enrico Cestino, Leonardo Reyneri, and Federico Valpiani. "Modular Multifunctional Composite Structure for CubeSat Applications: Embedded Battery Prototype Thermal Analysis." Batteries 11, no. 5 (2025): 172. https://doi.org/10.3390/batteries11050172.
Pełny tekst źródłaYuen, Brosnan, and Mihai Sima. "Low Cost Radiation Hardened Software and Hardware Implementation for CubeSats." Arbutus Review 9, no. 1 (2018): 46–62. http://dx.doi.org/10.18357/tar91201818386.
Pełny tekst źródłaTribak, Ferdaous, Othmane Bendaou, and Fayçal Ben Nejma. "Impact of orbit inclination on heat transfer in a 1U LEO CubeSat." MATEC Web of Conferences 371 (2022): 02001. http://dx.doi.org/10.1051/matecconf/202237102001.
Pełny tekst źródłaAbhishek, Sujith M.S., Kamalesh Pulluru, et al. "Mars Exploration Perseverance Rover." international journal of engineering technology and management sciences 7, no. 3 (2023): 436–39. http://dx.doi.org/10.46647/ijetms.2023.v07i03.56.
Pełny tekst źródłaSaeidi, Tale, and Saeid Karamzadeh. "Enhancing CubeSat Communication Through Beam-Steering Antennas: A Review of Technologies and Challenges." Electronics 14, no. 4 (2025): 754. https://doi.org/10.3390/electronics14040754.
Pełny tekst źródłaNganpet Nzeugaing, Gutembert, and Elmarie Biermann. "Image compression system for a 3U CubeSat." Journal of Engineering, Design and Technology 14, no. 3 (2016): 446–60. http://dx.doi.org/10.1108/jedt-12-2013-0086.
Pełny tekst źródłaFilho, Edemar Morsch, Laio Oriel Seman, Cezar Antônio Rigo, Vicente de Paulo Nicolau, Raúl García Ovejero, and Valderi Reis Quietinho Leithardt. "Irradiation Flux Modelling for Thermal–Electrical Simulation of CubeSats: Orbit, Attitude and Radiation Integration." Energies 13, no. 24 (2020): 6691. http://dx.doi.org/10.3390/en13246691.
Pełny tekst źródłaGiordano, A. "Enabling Interplanetary Exploration for CubeSats with a Fully Chemical Propulsion System." Journal of the British Interplanetary Society 76, no. 4 (2023): 134–44. http://dx.doi.org/10.59332/jbis-076-04-0134.
Pełny tekst źródłaNurgizat, Yerkebulan, Abu-Alim Ayazbay, Dimitri Galayko, Gani Balbayev, and Kuanysh Alipbayev. "Low-Cost Orientation Determination System for CubeSat Based Solely on Solar and Magnetic Sensors." Sensors 23, no. 14 (2023): 6388. http://dx.doi.org/10.3390/s23146388.
Pełny tekst źródłaChiewchanchang, P., P. Parittothok, R. Manorattana, and J. Wongwiwat. "The study of convergent-divergent nozzle geometry for CubeSat chemical propulsion system." IOP Conference Series: Earth and Environmental Science 1500, no. 1 (2025): 012012. https://doi.org/10.1088/1755-1315/1500/1/012012.
Pełny tekst źródłaLópez-Balcázar, C. A., Jorge Hernández, F. Ramírez-López, and G. G. García-Balcázar. "Verilog-based logical design of CubeSat ACS based in fuzzy inference systems focused on trapezoidal membership functions." Journal of Physics: Conference Series 2946, no. 1 (2025): 012004. https://doi.org/10.1088/1742-6596/2946/1/012004.
Pełny tekst źródłaCardillo, Emanuele, Renato Cananzi, and Paolo Vita. "Wideband Versatile Receiver for CubeSat Microwave Front-Ends." Sensors 22, no. 22 (2022): 9004. http://dx.doi.org/10.3390/s22229004.
Pełny tekst źródłaMusiał, Alicja, Dominik Markowski, Jan Życzkowski, and Krzysztof A. Cyran. "Analysis of Methods for CubeSat Mission Design Based on in-orbit Results of KRAKsat Mission." International Journal of Education and Information Technologies 15 (September 21, 2021): 295–302. http://dx.doi.org/10.46300/9109.2021.15.31.
Pełny tekst źródłaBogomolov, A. V., V. V. Bogomolov, A. F. Iyudin, et al. "Observations of solar cosmic rays using cubesat nanosatellites." Izvestiâ Akademii nauk SSSR. Seriâ fizičeskaâ 88, no. 2 (2024): 314–18. http://dx.doi.org/10.31857/s0367676524020266.
Pełny tekst źródłaNabanita Brahmachari, Mohamed Abdullah K, and Vishnuprakash B. "Aerodynamic Panel Shape Optimization for CubeSats to Reduce Chaotic Motion in Lower Earth Orbit." Acceleron Aerospace Journal 4, no. 2 (2025): 911–20. https://doi.org/10.61359/11.2106-2509.
Pełny tekst źródłaIvliev, Nikolay, Vladimir Podlipnov, Maxim Petrov, et al. "3U CubeSat-Based Hyperspectral Remote Sensing by Offner Imaging Hyperspectrometer with Radially-Fastened Primary Elements." Sensors 24, no. 9 (2024): 2885. http://dx.doi.org/10.3390/s24092885.
Pełny tekst źródłaHussain, Rifaqat, Khaled Aljaloud, Abida Shaheen Rao, et al. "Miniaturized Folded-Slot CubeSat MIMO Antenna Design with Pattern Diversity." Sensors 22, no. 20 (2022): 7855. http://dx.doi.org/10.3390/s22207855.
Pełny tekst źródłaFahimi, Farbod. "Vision-Based CubeSat Closed-Loop Formation Control in Close Proximities." Nonlinear Engineering 8, no. 1 (2019): 609–18. http://dx.doi.org/10.1515/nleng-2017-0147.
Pełny tekst źródłaWang, Zhaocheng, and Enrique R. Vivoni. "Mapping Flash Flood Hazards in Arid Regions Using CubeSats." Remote Sensing 14, no. 17 (2022): 4218. http://dx.doi.org/10.3390/rs14174218.
Pełny tekst źródłaOKINO, Satoshi, Shigeki UCHIYAMA, Kazuma SASE, et al. "Nihon University CubeSat Project." Proceedings of the JSME annual meeting 2004.5 (2004): 475–76. http://dx.doi.org/10.1299/jsmemecjo.2004.5.0_475.
Pełny tekst źródłaCook, Riley, Lukas Swan, and Kevin Plucknett. "Impact of Test Conditions While Screening Lithium-Ion Batteries for Capacity Degradation in Low Earth Orbit CubeSat Space Applications." Batteries 7, no. 1 (2021): 20. http://dx.doi.org/10.3390/batteries7010020.
Pełny tekst źródła