Artykuły w czasopismach na temat „De novo leaf transcriptome”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „De novo leaf transcriptome”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Salazar, Juan Alfonso, Cristian Vergara-Pulgar, Claudia Jorquera, et al. "De Novo Transcriptome Sequencing in Kiwifruit (Actinidia chinensis var. deliciosa (A Chev) Liang et Ferguson) and Development of Tissue-Specific Transcriptomic Resources." Agronomy 11, no. 5 (2021): 919. http://dx.doi.org/10.3390/agronomy11050919.
Pełny tekst źródłaKottapalli, Pratibha, Mauricio Ulloa, Kameswara Rao Kottapalli, Paxton Payton, and John Burke. "SNP Marker Discovery in Pima Cotton (Gossypium barbadense L.) Leaf Transcriptomes." Genomics Insights 9 (January 2016): GEI.S40377. http://dx.doi.org/10.4137/gei.s40377.
Pełny tekst źródłaSadat-Hosseini, Mohammad, Mohammad Reza Bakhtiarizadeh, Naser Boroomand, Masoud Tohidfar, and Kourosh Vahdati. "Combining independent de novo assemblies to optimize leaf transcriptome of Persian walnut." PLOS ONE 15, no. 4 (2020): e0232005. http://dx.doi.org/10.1371/journal.pone.0232005.
Pełny tekst źródłaKaushik, Prashant, and Shashi Kumar. "Data of de novo assembly of the leaf transcriptome in Aegle marmelos." Data in Brief 19 (August 2018): 700–703. http://dx.doi.org/10.1016/j.dib.2018.05.095.
Pełny tekst źródłaEguiluz, M., F. R. Kulcheski, R. Margis, and F. Guzman. "De novo assembly of Vriesea carinata leaf transcriptome to identify candidate cysteine-proteases." Gene 691 (April 2019): 96–105. http://dx.doi.org/10.1016/j.gene.2018.12.053.
Pełny tekst źródłaVitiello, Alessia, Rosa Rao, Giandomenico Corrado, et al. "De Novo Transcriptome Assembly of Cucurbita Pepo L. Leaf Tissue Infested by Aphis Gossypii." Data 3, no. 3 (2018): 36. http://dx.doi.org/10.3390/data3030036.
Pełny tekst źródłaClaude, Sivagami-Jean, Gurusamy Raman, and Seon-Joo Park. "Comparative Analysis and Identification of Terpene Synthase Genes in Convallaria keiskei Leaf, Flower and Root Using RNA-Sequencing Profiling." Plants 12, no. 15 (2023): 2797. http://dx.doi.org/10.3390/plants12152797.
Pełny tekst źródłaSenn, Savanah, Ray A. Enke, Steven J. Carrell, et al. "De Novo Leaf Transcriptome Assembly and Metagenomic Studies of Coast Live Oak (Quercus agrifolia)." Applied Microbiology 5, no. 1 (2025): 24. https://doi.org/10.3390/applmicrobiol5010024.
Pełny tekst źródłaMa, Jikai, Lingmin Wei, Jiayu Li, and Huogen Li. "The Analysis of Genes and Phytohormone Metabolic Pathways Associated with Leaf Shape Development in Liriodendron chinense via De Novo Transcriptome Sequencing." Genes 9, no. 12 (2018): 577. http://dx.doi.org/10.3390/genes9120577.
Pełny tekst źródłaLi, Peiling, Maofei Ren, Juanjuan Chen, et al. "Transcriptomic Analysis of Green Leaf Plants and White–Green Leaf Mutants in Haworthia cooperi var. pilifera." Genes 15, no. 5 (2024): 608. http://dx.doi.org/10.3390/genes15050608.
Pełny tekst źródłaLiu, Fu-Mei, Zhou Hong, Zeng-Jiang Yang, Ning-Nan Zhang, Xiao-Jin Liu, and Da-Ping Xu. "De Novo Transcriptome Analysis of Dalbergia odorifera and Transferability of SSR Markers Developed from the Transcriptome." Forests 10, no. 2 (2019): 98. http://dx.doi.org/10.3390/f10020098.
Pełny tekst źródłaKang, Yang Jae, Jayern Lee, Yong Hwan Kim, and Suk-Ha Lee. "Identification of tissue-specific gene clusters and orthologues of nodulation-related genes in Vigna angularis." Plant Genetic Resources 12, S1 (2014): S21—S26. http://dx.doi.org/10.1017/s1479262114000185.
Pełny tekst źródłaShi, Yuanyuan, Shengxiang Zhang, Daiyin Peng, et al. "De novo transcriptome analysis of Cnidium monnieri (L.) Cuss and detection of genes related to coumarin biosynthesis." PeerJ 8 (November 6, 2020): e10157. http://dx.doi.org/10.7717/peerj.10157.
Pełny tekst źródłaLyu, Y. Z., X. Y. Dong, L. B. Huang, and L. S. Huang. "De novo assembly of Koelreuteria transcriptome and analysis of major gene related to leaf etiolation." South African Journal of Botany 113 (November 2017): 355–61. http://dx.doi.org/10.1016/j.sajb.2017.09.004.
Pełny tekst źródłaFoong, Lian Chee, Anthony Siong Hock Ho, Brandon Pei Hui Yeo, Yang Mooi Lim, and Sheh May Tam. "Data of de novo assembly and functional annotation of the leaf transcriptome of Impatiens balsamina." Data in Brief 23 (April 2019): 103603. http://dx.doi.org/10.1016/j.dib.2018.12.042.
Pełny tekst źródłaTomescu, Mihai-Silviu, Selisha Ann Sooklal, Thuto Ntsowe, et al. "Transcriptome and proteome of the corm, leaf and flower of Hypoxis hemerocallidea (African potato)." PLOS ONE 16, no. 7 (2021): e0253741. http://dx.doi.org/10.1371/journal.pone.0253741.
Pełny tekst źródłaWimberley, James, Joseph Cahill, and Hagop S. Atamian. "De novo Sequencing and Analysis of Salvia hispanica Tissue-Specific Transcriptome and Identification of Genes Involved in Terpenoid Biosynthesis." Plants 9, no. 3 (2020): 405. http://dx.doi.org/10.3390/plants9030405.
Pełny tekst źródłaMiryeganeh, Matin, and Hidetoshi Saze. "De Novo Transcriptome Assembly, Functional Annotation, and Transcriptome Dynamics Analyses Reveal Stress Tolerance Genes in Mangrove Tree (Bruguiera gymnorhiza)." International Journal of Molecular Sciences 22, no. 18 (2021): 9874. http://dx.doi.org/10.3390/ijms22189874.
Pełny tekst źródłaFrias-Soler, Roberto Carlos, Lilian Villarín Pildaín, Agnes Hotz-Wagenblatt, Jonas Kolibius, Franz Bairlein, and Michael Wink. "De novo annotation of the transcriptome of the Northern Wheatear (Oenanthe oenanthe)." PeerJ 6 (November 20, 2018): e5860. http://dx.doi.org/10.7717/peerj.5860.
Pełny tekst źródłaLiu, Shichao, Siming Wang, Meichen Liu, et al. "De novo sequencing and analysis of the transcriptome of Panax ginseng in the leaf-expansion period." Molecular Medicine Reports 14, no. 2 (2016): 1404–12. http://dx.doi.org/10.3892/mmr.2016.5376.
Pełny tekst źródłaAdil, L., and Purushothaman Natarajan. "De novo assembly and analysis of Solanum trilobatum L. leaf transcriptome using next generation sequencing technology." Canadian Journal of Biotechnology 1, Special Issue (2017): 186. http://dx.doi.org/10.24870/cjb.2017-a172.
Pełny tekst źródłaMeera, S. P., Anusha Sreeshan, and Anu Augustine. "Leaf tissue specific transcriptome sequence and de novo assembly datasets of Asiatic mangrove Rhizophora mucronata Lam." Data in Brief 31 (August 2020): 105747. http://dx.doi.org/10.1016/j.dib.2020.105747.
Pełny tekst źródłaRai, Amit, Taiki Nakaya, Yohei Shimizu, et al. "De Novo Transcriptome Assembly and Characterization of Lithospermum officinale to Discover Putative Genes Involved in Specialized Metabolites Biosynthesis." Planta Medica 84, no. 12/13 (2018): 920–34. http://dx.doi.org/10.1055/a-0630-5925.
Pełny tekst źródłaWei, Fu-Jin, Saneyoshi Ueno, Tokuko Ujino-Ihara, et al. "Construction of a reference transcriptome for the analysis of male sterility in sugi (Cryptomeria japonica D. Don) focusing on MALE STERILITY 1 (MS1)." PLOS ONE 16, no. 2 (2021): e0247180. http://dx.doi.org/10.1371/journal.pone.0247180.
Pełny tekst źródłaWang, Yalin, Wenyan Zhu, Fei Ren, Na Zhao, Shixiao Xu, and Ping Sun. "Transcriptional Memory in Taraxacum mongolicum in Response to Long-Term Different Grazing Intensities." Plants 11, no. 17 (2022): 2251. http://dx.doi.org/10.3390/plants11172251.
Pełny tekst źródłaKumar Kushwaha, Sandeep, Ramesh R. Vetukuri, Firuz Odilbekov, Nidhi Pareek, Tina Henriksson, and Aakash Chawade. "Differential Gene Expression Analysis of Wheat Breeding Lines Reveal Molecular Insights in Yellow Rust Resistance under Field Conditions." Agronomy 10, no. 12 (2020): 1888. http://dx.doi.org/10.3390/agronomy10121888.
Pełny tekst źródłaYang, Shiwen, Kehao Liang, Aibin Wang, Ming Zhang, Jiangming Qiu, and Lingyun Zhang. "Physiological Characterization and Transcriptome Analysis of Camellia oleifera Abel. during Leaf Senescence." Forests 11, no. 8 (2020): 812. http://dx.doi.org/10.3390/f11080812.
Pełny tekst źródłaSicilia, Angelo, Gorgio Testa, Danilo Fabrizio Santoro, Salvatore Luciano Cosentino, Angela Roberta, and Lo Piero. "RNASeq analysis of giant cane reveals the leaf transcriptome dynamics under longterm salt stress." BMC Plant Biology 2019 (June 4, 2019): 19:335. https://doi.org/10.1186/s12870-019-1964-y.
Pełny tekst źródłaPrasidhee, V., and Purushothaman Natarajan. "Sequencing, De novo Assembly, Functional Annotation and Analysis of Cardiospermum halicacabum L. Leaf Transcriptome Using Illumina Platform." Canadian Journal of Biotechnology 1, Special Issue (2017): 190. http://dx.doi.org/10.24870/cjb.2017-a176.
Pełny tekst źródłaEvangelistella, Chiara, Alessio Valentini, Riccardo Ludovisi, et al. "De novo assembly, functional annotation, and analysis of the giant reed (Arundo donax L.) leaf transcriptome provide tools for the development of a biofuel feedstock." Biotechnology for Biofuels 10, no. 1 (2017): 138. https://doi.org/10.1186/s13068-017-0828-7.
Pełny tekst źródłaUpadhyay, Swati, Ujjal J. Phukan, Sonal Mishra, and Rakesh Shukla. "De novo leaf and root transcriptome analysis identified novel genes involved in Steroidal sapogenin biosynthesis in Asparagus racemosus." BMC Genomics 15, no. 1 (2014): 746. http://dx.doi.org/10.1186/1471-2164-15-746.
Pełny tekst źródłaBains, Savita, Vasundhara Thakur, Jagdeep Kaur, Kashmir Singh, and Ravneet Kaur. "Elucidating genes involved in sesquiterpenoid and flavonoid biosynthetic pathways in Saussurea lappa by de novo leaf transcriptome analysis." Genomics 111, no. 6 (2019): 1474–82. http://dx.doi.org/10.1016/j.ygeno.2018.09.022.
Pełny tekst źródłaYang, Yan Hui, Ming Jie Li, Xin Jian Chen, et al. "De novo characterization of the Rehmannia glutinosa leaf transcriptome and analysis of gene expression associated with replanting disease." Molecular Breeding 34, no. 3 (2014): 905–15. http://dx.doi.org/10.1007/s11032-014-0084-5.
Pełny tekst źródłaSseruwagi, Peter, James Wainaina, Joseph Ndunguru, et al. "The first transcriptomes from field-collected individual whiteflies (Bemisia tabaci, Hemiptera: Aleyrodidae)." Gates Open Research 1 (December 28, 2017): 16. http://dx.doi.org/10.12688/gatesopenres.12783.1.
Pełny tekst źródłaSseruwagi, Peter, James Wainaina, Joseph Ndunguru, et al. "The first transcriptomes from field-collected individual whiteflies (Bemisia tabaci, Hemiptera: Aleyrodidae)." Gates Open Research 1 (February 13, 2018): 16. http://dx.doi.org/10.12688/gatesopenres.12783.2.
Pełny tekst źródłaSseruwagi, Peter, James Wainaina, Joseph Ndunguru, et al. "The first transcriptomes from field-collected individual whiteflies (Bemisia tabaci, Hemiptera: Aleyrodidae): a case study of the endosymbiont composition." Gates Open Research 1 (March 8, 2018): 16. http://dx.doi.org/10.12688/gatesopenres.12783.3.
Pełny tekst źródłaZhang, Yanzhao, Shuzhen Xu, Yanwei Cheng, Zhengfeng Peng, and Jianming Han. "Transcriptome profiling of anthocyanin-related genes reveals effects of light intensity on anthocyanin biosynthesis in red leaf lettuce." PeerJ 6 (April 13, 2018): e4607. http://dx.doi.org/10.7717/peerj.4607.
Pełny tekst źródłade Souza, V. C., M. M. Aragão, L. S. Tavares, P. V. S. Z. Capriles, L. F. Viccini, and M. O. Santos. "De novo leaf transcriptome of a triploid linalool chemotype of Lippia alba (Mill.) N.E.Br. ex Britton & P. Wilson." Brazilian Journal of Botany 44, no. 4 (2021): 889–901. http://dx.doi.org/10.1007/s40415-021-00771-3.
Pełny tekst źródłaGao, Meiling, Siyu Yao, Yang Liu, et al. "Transcriptome Analysis of Tomato Leaf Spot Pathogen Fusarium proliferatum: De novo Assembly, Expression Profiling, and Identification of Candidate Effectors." International Journal of Molecular Sciences 19, no. 1 (2017): 31. http://dx.doi.org/10.3390/ijms19010031.
Pełny tekst źródłaAlsamadany, Hameed. "De novo leaf transcriptome assembly of Bougainvillea spectabilis for the identification of genes involves in the secondary metabolite pathways." Gene 746 (July 2020): 144660. http://dx.doi.org/10.1016/j.gene.2020.144660.
Pełny tekst źródłaWu, Hualing, Dong Chen, Jiaxian Li, et al. "De Novo Characterization of Leaf Transcriptome Using 454 Sequencing and Development of EST-SSR Markers in Tea (Camellia sinensis)." Plant Molecular Biology Reporter 31, no. 3 (2012): 524–38. http://dx.doi.org/10.1007/s11105-012-0519-2.
Pełny tekst źródłaWang, Gang, Xilong Du, Jing Ji, Chunfeng Guan, Zhaodi Li, and Tchouopou Lontchi Josine. "De novo characterization of the Lycium chinense Mill. leaf transcriptome and analysis of candidate genes involved in carotenoid biosynthesis." Gene 555, no. 2 (2015): 458–63. http://dx.doi.org/10.1016/j.gene.2014.10.058.
Pełny tekst źródłaBuitimea-Cantúa, Génesis V., and Jorge Molina-Torres. "De novo transcriptome sequencing, assembly and characterization of Heliopsis longipes roots vs. leaves to discover putative genes involved in specialized metabolites biosynthesis." Plant Omics, no. 14(01):2021 (September 10, 2021): 11–22. http://dx.doi.org/10.21475/poj.14.01.21.p3067.
Pełny tekst źródłaSun, Huapeng, Fang Li, Zijian Xu, et al. "De novo leaf and root transcriptome analysis to identify putative genes involved in triterpenoid saponins biosynthesis in Hedera helix L." PLOS ONE 12, no. 8 (2017): e0182243. http://dx.doi.org/10.1371/journal.pone.0182243.
Pełny tekst źródłaShi, Yun-Long, Yue-Yue Sheng, Zhuo-Yu Cai, et al. "Involvement of Salicylic Acid in Anthracnose Infection in Tea Plants Revealed by Transcriptome Profiling." International Journal of Molecular Sciences 20, no. 10 (2019): 2439. http://dx.doi.org/10.3390/ijms20102439.
Pełny tekst źródłaZHAO, Shuang, and Chenshu WANG. "Deep sequencing and transcriptome analyses to identify genes involved in iridoid biosynthesis in the medicinal plant Valeriana jatamansi Jones." Notulae Botanicae Horti Agrobotanici Cluj-Napoca 48, no. 1 (2020): 189–99. http://dx.doi.org/10.15835/nbha48111759.
Pełny tekst źródłaZheng, Jie, Xiangjun Kong, Bin Li, et al. "Comparative Transcriptome Analysis between a Novel Allohexaploid Cotton Progeny CMS Line LD6A and Its Maintainer Line LD6B." International Journal of Molecular Sciences 20, no. 24 (2019): 6127. http://dx.doi.org/10.3390/ijms20246127.
Pełny tekst źródłaZhang, Ting, Miaomiao Wang, Zhaoju Li, Xien Wu, and Xiaoli Liu. "Transcriptome analysis and exploration of genes involved in the biosynthesis of secoiridoids in Gentiana rhodantha." PeerJ 11 (March 8, 2023): e14968. http://dx.doi.org/10.7717/peerj.14968.
Pełny tekst źródłaWang, Ying, Kun Liu, De Bi, Shoubiao Zhou, and Jianwen Shao. "Characterization of the transcriptome and EST-SSR development in Boea clarkeana, a desiccation-tolerant plant endemic to China." PeerJ 5 (June 15, 2017): e3422. http://dx.doi.org/10.7717/peerj.3422.
Pełny tekst źródłaRai, Manoj K., Jatan K. Shekhawat, Vinod Kataria, and N. S. Shekhawat. "De novo assembly of leaf transcriptome, functional annotation and genomic resources development in Prosopis cineraria , a multipurpose tree of Indian Thar Desert." Plant Gene 12 (December 2017): 88–97. http://dx.doi.org/10.1016/j.plgene.2017.09.002.
Pełny tekst źródła