Gotowa bibliografia na temat „Degree splitting graph”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Degree splitting graph”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Degree splitting graph"

1

Basavanagoud, B., and Roopa S. Kusugal. "On the Line Degree Splitting Graph of a Graph." Bulletin of Mathematical Sciences and Applications 18 (May 2017): 1–10. http://dx.doi.org/10.18052/www.scipress.com/bmsa.18.1.

Pełny tekst źródła
Streszczenie:
In this paper, we introduce the concept of the line degree splitting graph of a graph. We obtain some properties of this graph. We find the girth of the line degree splitting graphs. Further, we establish the characterization of graphs whose line degree splitting graphs are eulerian, complete bipartite graphs and complete graphs.
Style APA, Harvard, Vancouver, ISO itp.
2

Zhang, Xiujun, Ahmad Bilal, M. Mobeen Munir, and Hafiz Mutte ur Rehman. "Maximum degree and minimum degree spectral radii of some graph operations." Mathematical Biosciences and Engineering 19, no. 10 (2022): 10108–21. http://dx.doi.org/10.3934/mbe.2022473.

Pełny tekst źródła
Streszczenie:
<abstract><p>New results relating to the maximum and minimum degree spectral radii of generalized splitting and shadow graphs have been constructed on the basis of any regular graph, referred as base graph. In particular, we establish the relations of extreme degree spectral radii of generalized splitting and shadow graphs of any regular graph.</p></abstract>
Style APA, Harvard, Vancouver, ISO itp.
3

Dominic, Charles. "Zero forcing number of degree splitting graphs and complete degree splitting graphs." Acta Universitatis Sapientiae, Mathematica 11, no. 1 (2019): 40–53. http://dx.doi.org/10.2478/ausm-2019-0004.

Pełny tekst źródła
Streszczenie:
Abstract A subset ℤ ⊆ V(G) of initially colored black vertices of a graph G is known as a zero forcing set if we can alter the color of all vertices in G as black by iteratively applying the subsequent color change condition. At each step, any black colored vertex has exactly one white neighbor, then change the color of this white vertex as black. The zero forcing number ℤ (G), is the minimum number of vertices in a zero forcing set ℤ of G (see [11]). In this paper, we compute the zero forcing number of the degree splitting graph (𝒟𝒮-Graph) and the complete degree splitting graph (𝒞𝒟𝒮-Graph) of a graph. We prove that for any simple graph, ℤ [𝒟𝒮(G)] k + t, where ℤ (G) = k and t is the number of newly introduced vertices in 𝒟𝒮(G) to construct it.
Style APA, Harvard, Vancouver, ISO itp.
4

Ibrahim, Arooj, and Saima Nazeer. "On Maximum Degree and Maximum Reverse Degree Energies of Splitting and Shadow graph of Complete graph." Utilitas Mathematica 119, no. 1 (2024): 73–82. http://dx.doi.org/10.61091/um119-08.

Pełny tekst źródła
Streszczenie:
In this paper, the relations of maximum degree energy and maximum reserve degree energy of a complete graph after removing a vertex have been shown to be proportional to the energy of the complete graph. The results of splitting the graph and shadow graphs are also presented for the complete graph after removing a vertex.
Style APA, Harvard, Vancouver, ISO itp.
5

Mirajkar, Keerthi G., and Y. B. Priyanka. "The Sum Degree Distance and the Product Degree Distance of Generalized Transformation Graphs Gab." Bulletin of Mathematical Sciences and Applications 16 (August 2016): 76–88. http://dx.doi.org/10.18052/www.scipress.com/bmsa.16.76.

Pełny tekst źródła
Streszczenie:
In this contribution, we consider line splitting graph LS(G) of a graph G as transformation graph G++ of Gab. We investigate the sum degree distance DD+(G) and product degree distance DD*(G) of transformation graph Gab, which are weighted version of Wiener index. The Transformation graphs of Gab are G++, G+-, G-+ and G--.
Style APA, Harvard, Vancouver, ISO itp.
6

Anitha, J., and S. Muthukumar. "Power domination in splitting and degree splitting graph." Proyecciones (Antofagasta) 40, no. 6 (2021): 1641–55. http://dx.doi.org/10.22199/issn.0717-6279-4357-4641.

Pełny tekst źródła
Streszczenie:
A vertex set S is called a power dominating set of a graph G if every vertex within the system is monitored by the set S following a collection of rules for power grid monitoring. The power domination number of G is the order of a minimal power dominating set of G. In this paper, we solve the power domination number for splitting and degree splitting graph.
Style APA, Harvard, Vancouver, ISO itp.
7

Falcón, Raúl M., Venkitachalam Aparna, and Nagaraj Mohanapriya. "Optimal secret share distribution in degree splitting communication networks." Networks and Heterogeneous Media 18, no. 4 (2023): 1713–46. http://dx.doi.org/10.3934/nhm.2023075.

Pełny tekst źródła
Streszczenie:
<abstract><p>Dynamic coloring has recently emerged as a valuable tool to optimize cryptographic protocols based on secret sharing, which enforce data security in communication networks and have significant importance in both online storage and cloud computing. This type of graph labeling enables the dealer to distribute secret shares among the nodes of a communication network so that everybody can recover the secret after a minimum number of rounds of communication. This paper delves into this topic by dealing with the dynamic coloring problem for degree splitting graphs. The topological structure of the latter enables the dealer to avoid dishonesty by adding control nodes that supervise all those participants with a similar influence in the network. More precisely, we solve the dynamic coloring problem for degree splitting graphs of any regular graph. The irregular case is partially solved by establishing a lower bound for the corresponding dynamic chromatic number. As illustrative examples, we solve the dynamic coloring problem for the degree splitting graphs of cycles, cocktail, book, comb, fan, jellyfish, windmill and barbell graphs.</p></abstract>
Style APA, Harvard, Vancouver, ISO itp.
8

Kaneria, V. J., and J. M. Shah. "ABSOLUTE MEAN GRACEFUL LABELING IN THE CONTEXT OF m-SPLITTING AND DEGREE SPLITTING GRAPHS." South East Asian J. of Mathematics and Mathematical Sciences 19, no. 03 (2023): 359–70. http://dx.doi.org/10.56827/seajmms.2023.1903.28.

Pełny tekst źródła
Streszczenie:
A graph G with q edges is said to be absolute mean graceful if there is a one-to-one function f from V (G) to the set {0,±1,±2,±3,...,±q} such that when each edge xy is assigned the label |f(x)−f(y)| 2 , then the resulting edge labels are distinct. In this paper, the absolute mean graceful labeling of m-splitting and degree splitting graphs of some graphs are investigated.
Style APA, Harvard, Vancouver, ISO itp.
9

Kalaivani, R., and D. Vijayalakshmi. "On dominator coloring of degree splitting graph of some graphs." Journal of Physics: Conference Series 1139 (December 2018): 012081. http://dx.doi.org/10.1088/1742-6596/1139/1/012081.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Mohanappriya, G., and D. Vijayalakshmi. "Degree based topological invariants of splitting graph." Communications Faculty Of Science University of Ankara Series A1Mathematics and Statistics 68, no. 2 (2019): 1341–49. http://dx.doi.org/10.31801/cfsuasmas.526546.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Więcej źródeł

Części książek na temat "Degree splitting graph"

1

Rao, K. Srinivasa, B. Amudha, and Ismail Naci Cangul. "A Note on Degree-Based Energies of m-Splitting and m-Shadow Graphs." In Advances in Intelligent Systems and Computing. Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-8054-1_22.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Degree splitting graph"

1

Priya, S. Banu, A. Parthiban, and N. Srinivasan. "Equitable power domination number of the degree splitting graph of certain graphs." In SECOND INTERNATIONAL CONFERENCE OF MATHEMATICS (SICME2019). Author(s), 2019. http://dx.doi.org/10.1063/1.5097514.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii