Gotowa bibliografia na temat „Demand prediction”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Demand prediction”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Demand prediction"

1

Zeng, Lingchao, Cheng Zhang, Pengfei Qin, Yejun Zhou, and Yaxing Cai. "One Method for Predicting Satellite Communication Terminal Service Demands Based on Artificial Intelligence Algorithms." Applied Sciences 14, no. 14 (2024): 6019. http://dx.doi.org/10.3390/app14146019.

Pełny tekst źródła
Streszczenie:
This paper presents a traffic demand prediction method based on deep learning algorithms, aiming to address the dynamic traffic demands in satellite communication and enhance resource management efficiency. Integrating Seq2Seq and LSTM networks, the method improves prediction accuracy and applicability, especially for mobile terminals such as aviation and maritime ones. Unlike traditional approaches, it does not require extensive statistical data and can be generalized to real-world systems, providing stable long-term traffic demand predictions. This study utilizes real-world flight data mappe
Style APA, Harvard, Vancouver, ISO itp.
2

Kachalla, Ibrahim Ali, and Christian Ghiaus. "Electric Water Boiler Energy Prediction: State-of-the-Art Review of Influencing Factors, Techniques, and Future Directions." Energies 17, no. 2 (2024): 443. http://dx.doi.org/10.3390/en17020443.

Pełny tekst źródła
Streszczenie:
Accurate and efficient prediction of electric water boiler (EWB) energy consumption is significant for energy management, effective demand response, cost minimisation, and robust control strategies. Adequate tracking and prediction of user behaviour can enhance renewable energy mini-grid (REMD) management. Fulfilling these demands for predicting the energy consumption of electric water boilers (EWB) would facilitate the establishment of a new framework that can enhance precise predictions of energy consumption trends for energy efficiency and demand management, which necessitates this state-of
Style APA, Harvard, Vancouver, ISO itp.
3

Thiagarajan, Rajesh, Mustafizur Rahman, Don Gossink, and Greg Calbert. "A Data Mining Approach To Improve Military Demand Forecasting." Journal of Artificial Intelligence and Soft Computing Research 4, no. 3 (2014): 205–14. http://dx.doi.org/10.1515/jaiscr-2015-0009.

Pełny tekst źródła
Streszczenie:
Abstract Accurately forecasting the demand of critical stocks is a vital step in the planning of a military operation. Demand prediction techniques, particularly autocorrelated models, have been adopted in the military planning process because a large number of stocks in the military inventory do not have consumption and usage rates per platform (e.g., ship). However, if an impending military operation is (significantly) different from prior campaigns then these prediction models may under or over estimate the demand of critical stocks leading to undesired operational impacts. To address this,
Style APA, Harvard, Vancouver, ISO itp.
4

Chen, Rongbo, Xiaoming Zhong, and Xinyuan Xu. "Bayesian Neural Network-Based Demand Forecasting for Express Transportation." Highlights in Science, Engineering and Technology 68 (October 9, 2023): 259–65. http://dx.doi.org/10.54097/hset.v68i.12078.

Pełny tekst źródła
Streszczenie:
The rapid development of e-commerce in recent years has driven the growth of the logistics service industry, which in turn has led to a significant increase in express delivery volume. Predicting express delivery volume accurately and in advance can help companies allocate various resources reasonably and provide the basis for predicting express delivery demand. To predict the specific transport volume of XX Express Company's logistics routes on April 28th and 29th, 2023, this article builds two Bayesian prediction models based on the company's historical transportation data as the training se
Style APA, Harvard, Vancouver, ISO itp.
5

Chen, Zhiju, Kai Liu, and Tao Feng. "Examine the Prediction Error of Ride-Hailing Travel Demands with Various Ignored Sparse Demand Effects." Journal of Advanced Transportation 2022 (April 12, 2022): 1–11. http://dx.doi.org/10.1155/2022/7690309.

Pełny tekst źródła
Streszczenie:
The accurate short-term travel demand predictions of ride-hailing orders can promote the optimal dispatching of vehicles in space and time, which is the crucial issue to achieve sustainable development of such dynamic demand-responsive service. The sparse demands are always ignored in the previous models, and the uncertainties in the spatiotemporal distribution of the predictions induced by setting subjective thresholds are rarely explored. This paper attempts to fill this gap and examine the spatiotemporal sparsity effect on ride-hailing travel demand prediction by using Didi Chuxing order da
Style APA, Harvard, Vancouver, ISO itp.
6

Kim, Sujae, Sangho Choo, Gyeongjae Lee, and Sanghun Kim. "Predicting Demand for Shared E-Scooter Using Community Structure and Deep Learning Method." Sustainability 14, no. 5 (2022): 2564. http://dx.doi.org/10.3390/su14052564.

Pełny tekst źródła
Streszczenie:
The shared e-scooter is a popular and user-convenient mode of transportation, owing to the free-floating manner of its service. The free-floating service has the advantage of offering pick-up and drop-off anywhere, but has the disadvantage of being unavailable at the desired time and place because it is spread across the service area. To improve the level of service, relocation strategies for shared e-scooters are needed, and it is important to predict the demand for their use within a given area. Therefore, this study aimed to develop a demand prediction model for the use of shared e-scooters
Style APA, Harvard, Vancouver, ISO itp.
7

Tian, Wen, Ying Zhang, Yinfeng Li, and Huili Zhang. "Probabilistic Demand Prediction Model for En-Route Sector." International Journal of Computer Theory and Engineering 8, no. 6 (2016): 495–99. http://dx.doi.org/10.7763/ijcte.2016.v8.1095.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Lee, Eunkyeong, Hosik Choi, and Do-Gyeong Kim. "PGDRT: Prediction Demand Based on Graph Convolutional Network for Regional Demand-Responsive Transport." Journal of Advanced Transportation 2023 (January 5, 2023): 1–13. http://dx.doi.org/10.1155/2023/7152010.

Pełny tekst źródła
Streszczenie:
To provide an efficient demand-responsive transport (DRT) service, we established a model for predicting regional movement demand that reflects spatiotemporal characteristics. DRT facilitates the movement of restricted passengers. However, passengers with restrictions are highly dependent on transportation services, and there are large fluctuations in travel demand based on the region, time, and intermittent demand constraints. Without regional demand predictions, the gaps between the desired boarding times of passengers and the actual boarding times are significantly increased, resulting in i
Style APA, Harvard, Vancouver, ISO itp.
9

RUPADEVI, RUPADEVI. "Electric Vehicle Energy Demand Prediction: A Critical and Systematic Overview." International Scientific Journal of Engineering and Management 04, no. 04 (2025): 1–7. https://doi.org/10.55041/isjem03035.

Pełny tekst źródła
Streszczenie:
Abstract: Accurately predicting energy demand is crucial for managing charging infrastructure, maximising vehicle performance, and guaranteeing effective energy distribution as EV adoption picks up speed. This study offers a thorough and organised analysis of EV energy demand prediction methods, covering deep learning frameworks, machine learning models, and conventional statistical methods. It also presents a useful implementation using a web application built with Flask that forecasts EV energy use depending on variables like speed, temperature, battery capacity, and distance travelled. In o
Style APA, Harvard, Vancouver, ISO itp.
10

Ma, Yuanzheng, Bing Lv, Yuanfa Wang, and Changyu Shi. "Crop Water Requirement Prediction Method Based on EEMD-Attention-LSTM Model." Journal of Physics: Conference Series 2637, no. 1 (2023): 012028. http://dx.doi.org/10.1088/1742-6596/2637/1/012028.

Pełny tekst źródła
Streszczenie:
Abstract Crop water demand prediction is an important part of Precision agriculture. Due to the nonlinear relationship between input variables (weather data, soil moisture, and crop type) and output variables (crop water demand), it is difficult to accurately predict crop water demand. This article proposes a method for predicting crop water demand based on the EEMD Attention LSTM model. The model combines the ensemble empirical mode decomposition (EEMD), attention mechanism (Attention), and Long short-term memory (LSTM) neural networks to capture the changes in different scales of input varia
Style APA, Harvard, Vancouver, ISO itp.
Więcej źródeł

Rozprawy doktorskie na temat "Demand prediction"

1

McElroy, Wade Allen. "Demand prediction modeling for utility vegetation management." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/117973.

Pełny tekst źródła
Streszczenie:
Thesis: M.B.A., Massachusetts Institute of Technology, Sloan School of Management, in conjunction with the Leaders for Global Operations Program at MIT, 2018.<br>Thesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, in conjunction with the Leaders for Global Operations Program at MIT, 2018.<br>Cataloged from PDF version of thesis.<br>Includes bibliographical references (pages 63-64).<br>This thesis proposes a demand prediction model for utility vegetation management (VM) organizations. The primary uses of the model is to aid in the technology adoption proce
Style APA, Harvard, Vancouver, ISO itp.
2

Zhou, Yang. "Multi-Source Large Scale Bike Demand Prediction." Thesis, University of North Texas, 2020. https://digital.library.unt.edu/ark:/67531/metadc1703413/.

Pełny tekst źródła
Streszczenie:
Current works of bike demand prediction mainly focus on cluster level and perform poorly on predicting demands of a single station. In the first task, we introduce a contextual based bike demand prediction model, which predicts bike demands for per station by combining spatio-temporal network and environment contexts synergistically. Furthermore, since people's movement information is an important factor, which influences the bike demands of each station. To have a better understanding of people's movements, we need to analyze the relationship between different places. In the second task, we p
Style APA, Harvard, Vancouver, ISO itp.
3

Sun, Rui S. M. Massachusetts Institute of Technology. "Analytics for hotels : demand prediction and decision optimization." Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/111438.

Pełny tekst źródła
Streszczenie:
Thesis: S.M. in Transportation, Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, 2017.<br>Thesis: S.M., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2017.<br>Cataloged from PDF version of thesis.<br>Includes bibliographical references (pages 69-71).<br>The thesis presents the work with a hotel company, as an example of how machine learning techniques can be applied to improve demand predictions and help a hotel property to make better decisions on its pricing and capacity allocation strategies. To sol
Style APA, Harvard, Vancouver, ISO itp.
4

Svensk, Gustav. "TDNet : A Generative Model for Taxi Demand Prediction." Thesis, Linköpings universitet, Programvara och system, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-158514.

Pełny tekst źródła
Streszczenie:
Supplying the right amount of taxis in the right place at the right time is very important for taxi companies. In this paper, the machine learning model Taxi Demand Net (TDNet) is presented which predicts short-term taxi demand in different zones of a city. It is based on WaveNet which is a causal dilated convolutional neural net for time-series generation. TDNet uses historical demand from the last years and transforms features such as time of day, day of week and day of month into 26-hour taxi demand forecasts for all zones in a city. It has been applied to one city in northern Europe and on
Style APA, Harvard, Vancouver, ISO itp.
5

Lu, Hongwei Marketing Australian School of Business UNSW. "Small area market demand prediction in the automobile industry." Publisher:University of New South Wales. Marketing, 2008. http://handle.unsw.edu.au/1959.4/43027.

Pełny tekst źródła
Streszczenie:
The general aim of this research is to investigate approaches to: •improve small area market demand (i.e. SAMD) prediction accuracy for the purchase of automobiles at the level of each Census Collection District (i.e. CCD); and •enhance understanding of meso-level marketing phenomena (i.e. geographically aggregated phenomena) relating to SAMD. Given the importance of SAMD prediction, and the limitations posed by current methods, four research questions are addressed: •What are the key challenges in meso-level SAMD prediction? •What variables affect SAMD prediction? •What techniques can be use
Style APA, Harvard, Vancouver, ISO itp.
6

Eressa, Muluken Regas. "Probabilistic Models for Demand Supply Prediction in The Eenergy Sector." Electronic Thesis or Diss., Université Gustave Eiffel, 2024. http://www.theses.fr/2024UEFL2005.

Pełny tekst źródła
Streszczenie:
Cette thèse étudie des modèles prédictifs probabilistes basés sur les processus gaussiens et l'apprentissage en profondeur pour la prévision de la demande d'électricité. Étant donné que les processus gaussiens sont des modèles prédictifs basés sur des noyaux, leur performance est limitée par le type, le nombre et la dimension du noyau sélectionné. Pour répondre à ces limitations, premièrement, elle propose une nouvelle technique d'approximation gaussienne qui aborde le goulot d'étranglement computationnel bayésien. Deuxièmement, elle propose un algorithme d'estimation de noyau compositionnel s
Style APA, Harvard, Vancouver, ISO itp.
7

Lönnbark, Carl. "On Risk Prediction." Doctoral thesis, Umeå universitet, Nationalekonomi, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-22200.

Pełny tekst źródła
Streszczenie:
This thesis comprises four papers concerning risk prediction. Paper [I] suggests a nonlinear and multivariate time series model framework that enables the study of simultaneity in returns and in volatilities, as well as asymmetric effects arising from shocks. Using daily data 2000-2006 for the Baltic state stock exchanges and that of Moscow we find recursive structures with Riga directly depending in returns on Tallinn and Vilnius, and Tallinn on Vilnius. For volatilities both Riga and Vilnius depend on Tallinn. In addition, we find evidence of asymmetric effects of shocks arising in Moscow an
Style APA, Harvard, Vancouver, ISO itp.
8

Wong, Wai Ho. "Predicting Demand in Cloud Computing Environments." Thesis, The University of Sydney, 2013. http://hdl.handle.net/2123/9497.

Pełny tekst źródła
Streszczenie:
Cloud computing is a new computing paradigm that enables elastic on-demand pay-per-use access to shared computational resources. However, there are current limitations on the elasticity of cloud resources specifically deployment delays and mismatches in pricing granularity. Demand prediction - the estimation of future demand - serves to mitigate these limitations of elasticity. The focus of this thesis is the demand predictor that operates within the context of cloud resource management. It fulfils three tasks: 1) learn demand patterns from past demand behaviour; 2) predict upcoming demand
Style APA, Harvard, Vancouver, ISO itp.
9

Bernhardsson, Viktor, and Rasmus Ringdahl. "Real time highway traffic prediction based on dynamic demand modeling." Thesis, Linköpings universitet, Kommunikations- och transportsystem, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-112094.

Pełny tekst źródła
Streszczenie:
Traffic problems caused by congestion are increasing in cities all over the world. As a traffic management tool traffic predictions can be used in order to make prevention actions against traffic congestion. There is one software for traffic state estimations called Mobile Millennium Stockholm (MMS) that are a part of a project for estimate real-time traffic information.In this thesis a framework for running traffic predictions in the MMS software have been implemented and tested on a stretch north of Stockholm. The thesis is focusing on the implementation and evaluation of traffic prediction
Style APA, Harvard, Vancouver, ISO itp.
10

Jones, Simon Andrew. "Prediction of demand for emergency care in an acute hospital." Thesis, Kingston University, 2005. http://eprints.kingston.ac.uk/20739/.

Pełny tekst źródła
Streszczenie:
This thesis describes some models that attempt to forecast the number of occupied beds due to emergency admissions each day in an acute general hospital. Hospital bed managers have two conflicting demands: they must not only ensure that at all times they have sufficient empty beds to cope with possible emergency admissions but they must fill as many empty beds as possible with people on the waiting list. This model is important as it could help balance these two conflicting demands. The research is based on data from a district general and a postgraduate teaching hospital in South East London.
Style APA, Harvard, Vancouver, ISO itp.
Więcej źródeł

Książki na temat "Demand prediction"

1

Cohen, Maxime C., Paul-Emile Gras, Arthur Pentecoste, and Renyu Zhang. Demand Prediction in Retail. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-85855-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Tomar, Anuradha, Prerna Gaur, and Xiaolong Jin, eds. Prediction Techniques for Renewable Energy Generation and Load Demand Forecasting. Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-6490-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Tennant, S. T. Short term demand analysis and prediction for control of water supply. Leicester Polytechnic, 1987.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Tennant, Steven Trevor. Short term demand analysis and prediction for control of water supply. Leicester Polytechnic, 1987.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Tennant, S. T. A system description of GIDAP(Graphical Interactive Demand Analysis & Prediction program. Leicester Polytechnic, 1986.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Tennant, S. A system description of GIDAP: (A Graphical Interactive Demand Analysis and Prediction Program). Leicester Polytechnic, 1986.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Coulbeck, B. Development of a demand prediction program for use in optimal control of water supply. Leicester Polytechnic, 1985.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Tennant, S. Test and verification procedures for GIDAP: (A Graphical Interactive Demand Analysis and Prediction Program). Leicester Polytechnic, 1986.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Cronin, David. Patterns in money demand: Indicators and predictions. Research and Publications Department, Central Bank of Ireland, 1994.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

de, Jong Gerard, EXPEDITE Consortium, RAND Europe, Rand Corporation, and European Commission. Directorate-General for Energy and Transport., eds. EXPEDITE: EXpert-system based PrEdictions of demand for internal transport in Europe. RAND, 2003.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Więcej źródeł

Części książek na temat "Demand prediction"

1

Cohen, Maxime C., Paul-Emile Gras, Arthur Pentecoste, and Renyu Zhang. "Common Demand Prediction Methods." In Demand Prediction in Retail. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-85855-1_3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Cohen, Maxime C., Paul-Emile Gras, Arthur Pentecoste, and Renyu Zhang. "Evaluation and Visualization." In Demand Prediction in Retail. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-85855-1_6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Cohen, Maxime C., Paul-Emile Gras, Arthur Pentecoste, and Renyu Zhang. "Clustering Techniques." In Demand Prediction in Retail. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-85855-1_5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Cohen, Maxime C., Paul-Emile Gras, Arthur Pentecoste, and Renyu Zhang. "Conclusion and Advanced Topics." In Demand Prediction in Retail. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-85855-1_8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Cohen, Maxime C., Paul-Emile Gras, Arthur Pentecoste, and Renyu Zhang. "Tree-Based Methods." In Demand Prediction in Retail. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-85855-1_4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Cohen, Maxime C., Paul-Emile Gras, Arthur Pentecoste, and Renyu Zhang. "Introduction." In Demand Prediction in Retail. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-85855-1_1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Cohen, Maxime C., Paul-Emile Gras, Arthur Pentecoste, and Renyu Zhang. "Data Pre-Processing and Modeling Factors." In Demand Prediction in Retail. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-85855-1_2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Cohen, Maxime C., Paul-Emile Gras, Arthur Pentecoste, and Renyu Zhang. "More Advanced Methods." In Demand Prediction in Retail. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-85855-1_7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Rubio-Bellido, Carlos, Alexis Pérez-Fargallo, and Jesús Pulido-Arcas. "Energy Demand Analysis." In Energy Optimization and Prediction in Office Buildings. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-90146-6_3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Yu, Hang, Zishuo Huang, Yiqun Pan, and Weiding Long. "Energy Demand Analysis and Prediction." In Guidelines for Community Energy Planning. Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-9600-7_2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Demand prediction"

1

Spatha, Myrto M., and Dionisios N. Sotiropoulos. "“Transforming” Electricity Demand Prediction." In 2024 15th International Conference on Information, Intelligence, Systems & Applications (IISA). IEEE, 2024. https://doi.org/10.1109/iisa62523.2024.10786682.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Nugroho, Restu, Irene Erlyn Wina Rachmawan, Prananda Kamaluddin Rafif, and Ferrizal. "Integrating Demand Hotspots and Adjusted Spatial Indexing for Urban Taxi Demand Prediction." In 2024 IEEE International Conference on Big Data (BigData). IEEE, 2024. https://doi.org/10.1109/bigdata62323.2024.10825750.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Kumar, Neeraj, Tanusha Mittal, Hassan M. Al-Jawahry, et al. "Electricity Demand Prediction Through Artificial Intelligence Methods." In 2024 1st International Conference on Sustainable Computing and Integrated Communication in Changing Landscape of AI (ICSCAI). IEEE, 2024. https://doi.org/10.1109/icscai61790.2024.10866136.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

S, Senthil Pandi, Kumar P, Nathaniel Abishek A, and Mohamed Hussain S. "Demand Prediction using AutoML Based Ensemble Algorithm." In 2025 International Conference on Artificial Intelligence and Data Engineering (AIDE). IEEE, 2025. https://doi.org/10.1109/aide64228.2025.10986835.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Saradha, K. R., Susila Sakthy S, Arivoli A, and Dhanush M. "Urban Water Demand Prediction System Using LSTM." In 2025 International Conference on Computing and Communication Technologies (ICCCT). IEEE, 2025. https://doi.org/10.1109/iccct63501.2025.11020461.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Shyamala, Pachila, K. Deepa, and S. V. Tresa Sangeetha. "ML Techniques for Crop Demand Prediction- A Study." In 2024 International Conference on Knowledge Engineering and Communication Systems (ICKECS). IEEE, 2024. http://dx.doi.org/10.1109/ickecs61492.2024.10616730.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Doan, Van Khanh, Dong Nguyen Doan, and Binh Hau Nguyen. "Improving Energy Demand Prediction Use Deep Learning Network." In 2024 9th International Conference on Applying New Technology in Green Buildings (ATiGB). IEEE, 2024. http://dx.doi.org/10.1109/atigb63471.2024.10717679.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Sarhir, Oumaima, Zoubida Benmamoun, and Mouad Ben Mamoun. "Prediction Analysis for Demand Forcasting in Automotive Industry." In 2024 10th International Conference on Optimization and Applications (ICOA). IEEE, 2024. http://dx.doi.org/10.1109/icoa62581.2024.10754474.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Zhaxi, Dongzhou. "EMD-SOFTS-based demand prediction for supply chain." In 4th International Conference on Electronic Information Engineering and Data Processing (EIEDP 2025), edited by Azlan Bin Mohd Zain and Lei Chen. SPIE, 2025. https://doi.org/10.1117/12.3067110.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Weng, Haoyuan. "Demand Prediction Model." In 2015 International Conference on Advances in Mechanical Engineering and Industrial Informatics. Atlantis Press, 2015. http://dx.doi.org/10.2991/ameii-15.2015.291.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Raporty organizacyjne na temat "Demand prediction"

1

Kimboko, Andre. A direct and behavioral travel demand model for prediction of campground use by urban recreationists. Portland State University Library, 2000. http://dx.doi.org/10.15760/etd.455.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Weeks, Melvyn. Machine Learning for Prediction and Causal Inference. Instats Inc., 2022. http://dx.doi.org/10.61700/u0qw7udtxd5iz469.

Pełny tekst źródła
Streszczenie:
This seminar explores machine learning techniques for prediction and causal inference, where a researcher or decision maker needs to make a prediction or understand the impact of an intervention in a heterogenous population. For example, researchers may want to infer the effect of an economic, educational, or public health intervention, or a firm may seek to understand how a change in pricing will impact aggregate demand. In these cases, the interest may be in an average effect, but also how the effect varies over different segments of the population (i.e., heterogeneity in the effect). This s
Style APA, Harvard, Vancouver, ISO itp.
3

Weeks, Melvyn. Machine Learning for Prediction and Causal Inference. Instats Inc., 2022. http://dx.doi.org/10.61700/r1qb0f2baf6jj469.

Pełny tekst źródła
Streszczenie:
This seminar explores machine learning techniques for prediction and causal inference, where a researcher or decision maker needs to make a prediction or understand the impact of an intervention in a heterogenous population. For example, researchers may want to infer the effect of an economic, educational, or public health intervention, or a firm may seek to understand how a change in pricing will impact aggregate demand. In these cases, the interest may be in an average effect, but also how the effect varies over different segments of the population (i.e., heterogeneity in the effect). This s
Style APA, Harvard, Vancouver, ISO itp.
4

Leis. L51866 Field Studies to Support SCC Life Prediction Model. Pipeline Research Council International, Inc. (PRCI), 1997. http://dx.doi.org/10.55274/r0010357.

Pełny tekst źródła
Streszczenie:
One objective of this project was to gather and analyze SCC field data on lines being retested for use in assessing the validity of current or future SCC models. The scope of this initial study was limited to colonies of SCC in one valve section of a pipeline that runs from Texas to the northeast of the United States. This valve section had an early history of high pH SCC. The susceptibility since has been controlled through hydrotesting and modifications to the gas compression to meet upstream demand while reducing the discharge temperature. In addition to collecting data to validate models o
Style APA, Harvard, Vancouver, ISO itp.
5

Sapp, James. Electricity Demand Forecasting in a Changing Regional Context: The Application of the Multiple Perspective Concept to the Prediction Process. Portland State University Library, 2000. http://dx.doi.org/10.15760/etd.574.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Yang, Yu, and Hen-Geul Yeh. Electrical Vehicle Charging Infrastructure Design and Operations. Mineta Transportation Institute, 2023. http://dx.doi.org/10.31979/mti.2023.2240.

Pełny tekst źródła
Streszczenie:
California aims to achieve five million zero-emission vehicles (ZEVs) on the road by 2030 and 250,000 electrical vehicle (EV) charging stations by 2025. To reduce barriers in this process, the research team developed a simulation-based system for EV charging infrastructure design and operations. The increasing power demand due to the growing EV market requires advanced charging infrastructures and operating strategies. This study will deliver two modules in charging station design and operations, including a vehicle charging schedule and an infrastructure planning module for the solar-powered
Style APA, Harvard, Vancouver, ISO itp.
7

Kim, Changmo, Ghazan Khan, Brent Nguyen, and Emily L. Hoang. Development of a Statistical Model to Predict Materials’ Unit Prices for Future Maintenance and Rehabilitation in Highway Life Cycle Cost Analysis. Mineta Transportation Institute, 2020. http://dx.doi.org/10.31979/mti.2020.1806.

Pełny tekst źródła
Streszczenie:
The main objectives of this study are to investigate the trends in primary pavement materials’ unit price over time and to develop statistical models and guidelines for using predictive unit prices of pavement materials instead of uniform unit prices in life cycle cost analysis (LCCA) for future maintenance and rehabilitation (M&amp;R) projects. Various socio-economic data were collected for the past 20 years (1997–2018) in California, including oil price, population, government expenditure in transportation, vehicle registration, and other key variables, in order to identify factors affecting
Style APA, Harvard, Vancouver, ISO itp.
8

Shapovalov, Yevhenii B., Viktor B. Shapovalov, Fabian Andruszkiewicz, and Nataliia P. Volkova. Analyzing of main trends of STEM education in Ukraine using stemua.science statistics. [б. в.], 2020. http://dx.doi.org/10.31812/123456789/3883.

Pełny tekst źródła
Streszczenie:
STEM-education is a modern effective approach that nowadays can be interpreted in very different ways and it even has some modification (STEM/STEAM/STREAM). Anyway, the “New Ukrainian school” concept includes approaches similar to STEM-education. However, there wasn’t analyzed the current state of STEM-education in Ukraine. We propose to analyses it by using SEO analysis of one of the most popular STEM-oriented cloud environment in Ukraine stemua.science. It is proposed to use the cycle for cloud-based educational environments (publishing/SEO analysis/team’s brainstorm/prediction/creation of f
Style APA, Harvard, Vancouver, ISO itp.
9

Verma, Monika, Thomas Hertel, and Paul Preckel. Predicting Within Country Household Food Expenditure Variation Using International Cross-Section Estimates. GTAP Working Paper, 2009. http://dx.doi.org/10.21642/gtap.wp57.

Pełny tekst źródła
Streszczenie:
There is a long and distinguished literature involving demand analysis using international cross-section data. Such models are widely used for predicting national per capita consumption. However, there is nothing in this literature testing the performance of estimated models in predicting demands across the income spectrum within a single country. This paper fills the gap. We estimate an AIDADS model using cross-section international per capita data, and find that it does well in predicting food demand across the income distribution within Bangladesh. This suggests that there may be considerab
Style APA, Harvard, Vancouver, ISO itp.
10

Hunt, Will, and Jacqueline O'Reilly. Rapid Recruitment in Retail: Leveraging AI in the hiring of hourly paid frontline associates during the Covid-19 Pandemic. Digital Futures at Work Research Centre, 2022. http://dx.doi.org/10.20919/alnb9606.

Pełny tekst źródła
Streszczenie:
Increased demand due to the Coronavirus pandemic created the need for Walmart to onboard tens of thousands of workers in a short period. This acted as a catalyst for Walmart to bring forward existing plans to update the hiring system for store-level hourly paid associates in its US stores. The Rapid Recruitment project sought to make hiring safer, faster, fairer and more effective by removing in-person interviews and leveraging machine learning and predictive analytics. This working paper reports on a case study of the Rapid Recruitment project involving semi-structured qualitative interviews
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!