Artykuły w czasopismach na temat „Demand prediction”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Demand prediction”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Zeng, Lingchao, Cheng Zhang, Pengfei Qin, Yejun Zhou, and Yaxing Cai. "One Method for Predicting Satellite Communication Terminal Service Demands Based on Artificial Intelligence Algorithms." Applied Sciences 14, no. 14 (2024): 6019. http://dx.doi.org/10.3390/app14146019.
Pełny tekst źródłaKachalla, Ibrahim Ali, and Christian Ghiaus. "Electric Water Boiler Energy Prediction: State-of-the-Art Review of Influencing Factors, Techniques, and Future Directions." Energies 17, no. 2 (2024): 443. http://dx.doi.org/10.3390/en17020443.
Pełny tekst źródłaThiagarajan, Rajesh, Mustafizur Rahman, Don Gossink, and Greg Calbert. "A Data Mining Approach To Improve Military Demand Forecasting." Journal of Artificial Intelligence and Soft Computing Research 4, no. 3 (2014): 205–14. http://dx.doi.org/10.1515/jaiscr-2015-0009.
Pełny tekst źródłaChen, Rongbo, Xiaoming Zhong, and Xinyuan Xu. "Bayesian Neural Network-Based Demand Forecasting for Express Transportation." Highlights in Science, Engineering and Technology 68 (October 9, 2023): 259–65. http://dx.doi.org/10.54097/hset.v68i.12078.
Pełny tekst źródłaChen, Zhiju, Kai Liu, and Tao Feng. "Examine the Prediction Error of Ride-Hailing Travel Demands with Various Ignored Sparse Demand Effects." Journal of Advanced Transportation 2022 (April 12, 2022): 1–11. http://dx.doi.org/10.1155/2022/7690309.
Pełny tekst źródłaKim, Sujae, Sangho Choo, Gyeongjae Lee, and Sanghun Kim. "Predicting Demand for Shared E-Scooter Using Community Structure and Deep Learning Method." Sustainability 14, no. 5 (2022): 2564. http://dx.doi.org/10.3390/su14052564.
Pełny tekst źródłaTian, Wen, Ying Zhang, Yinfeng Li, and Huili Zhang. "Probabilistic Demand Prediction Model for En-Route Sector." International Journal of Computer Theory and Engineering 8, no. 6 (2016): 495–99. http://dx.doi.org/10.7763/ijcte.2016.v8.1095.
Pełny tekst źródłaLee, Eunkyeong, Hosik Choi, and Do-Gyeong Kim. "PGDRT: Prediction Demand Based on Graph Convolutional Network for Regional Demand-Responsive Transport." Journal of Advanced Transportation 2023 (January 5, 2023): 1–13. http://dx.doi.org/10.1155/2023/7152010.
Pełny tekst źródłaRUPADEVI, RUPADEVI. "Electric Vehicle Energy Demand Prediction: A Critical and Systematic Overview." International Scientific Journal of Engineering and Management 04, no. 04 (2025): 1–7. https://doi.org/10.55041/isjem03035.
Pełny tekst źródłaMa, Yuanzheng, Bing Lv, Yuanfa Wang, and Changyu Shi. "Crop Water Requirement Prediction Method Based on EEMD-Attention-LSTM Model." Journal of Physics: Conference Series 2637, no. 1 (2023): 012028. http://dx.doi.org/10.1088/1742-6596/2637/1/012028.
Pełny tekst źródłaMi, Chunlei, Shifen Cheng, and Feng Lu. "Predicting Taxi-Calling Demands Using Multi-Feature and Residual Attention Graph Convolutional Long Short-Term Memory Networks." ISPRS International Journal of Geo-Information 11, no. 3 (2022): 185. http://dx.doi.org/10.3390/ijgi11030185.
Pełny tekst źródłaIrfan, Muhammad, Ahmad Shaf, Tariq Ali, et al. "Multi-region electricity demand prediction with ensemble deep neural networks." PLOS ONE 18, no. 5 (2023): e0285456. http://dx.doi.org/10.1371/journal.pone.0285456.
Pełny tekst źródłaBrahimi, Nihad, Huaping Zhang, and Zahid Razzaq. "Explainable Spatio-Temporal Inference Network for Car-Sharing Demand Prediction." ISPRS International Journal of Geo-Information 14, no. 4 (2025): 163. https://doi.org/10.3390/ijgi14040163.
Pełny tekst źródłaLi, Jiale, Li Fan, Xuran Wang, Tiejiang Sun, and Mengjie Zhou. "Product Demand Prediction with Spatial Graph Neural Networks." Applied Sciences 14, no. 16 (2024): 6989. http://dx.doi.org/10.3390/app14166989.
Pełny tekst źródłaTang, Li Fang. "CPSO-SVM Based Petroleum Demand Prediction." Applied Mechanics and Materials 273 (January 2013): 91–96. http://dx.doi.org/10.4028/www.scientific.net/amm.273.91.
Pełny tekst źródłaLekidis, Alexios, and Elpiniki I. Papageorgiou. "Edge-Based Short-Term Energy Demand Prediction." Energies 16, no. 14 (2023): 5435. http://dx.doi.org/10.3390/en16145435.
Pełny tekst źródłaJiang, Aiping, Junjun Gao, Ying Wan, Xinyi Zhao, and Siqi Shan. "Intermittent Prediction Method Based On Marcov Method And Grey Prediction Method." European Scientific Journal, ESJ 12, no. 15 (2016): 81. http://dx.doi.org/10.19044/esj.2016.v12n15p81.
Pełny tekst źródłaLi, Jun, Yijun Dong, Qiuxuan Wang, and Chunlu Liu. "Proactive pricing strategies for on-street parking management with physics-informed neural networks." International Journal of Strategic Property Management 28, no. 5 (2024): 320–33. http://dx.doi.org/10.3846/ijspm.2024.22233.
Pełny tekst źródłaJuveria, Khan, Rao Jyoti, and Patil Pramod. "Prediction of Future Electric Energy Consumption using Machine Learning Framework." International Journal of Engineering and Advanced Technology (IJEAT) 9, no. 3 (2020): 3347–50. https://doi.org/10.35940/ijeat.C5829.029320.
Pełny tekst źródłaRamana, Dr A. Venkata. "Taxi Demand Prediction using ML." International Journal for Research in Applied Science and Engineering Technology 10, no. 6 (2022): 3811–15. http://dx.doi.org/10.22214/ijraset.2022.43912.
Pełny tekst źródłaSachdeva, Purnima, and K. N. Sarvanan. "Prediction of Bike Sharing Demand." Oriental journal of computer science and technology 10, no. 1 (2017): 219–26. http://dx.doi.org/10.13005/ojcst/10.01.30.
Pełny tekst źródłaMohammadi, Milad, Song Han, Tor M. Aamodt, and William J. Dally. "On-Demand Dynamic Branch Prediction." IEEE Computer Architecture Letters 14, no. 1 (2015): 50–53. http://dx.doi.org/10.1109/lca.2014.2330820.
Pełny tekst źródłaB. Rupadevi and Sambaiahpalem Adikesavulu. "Electric Vehicle Energy Demand Prediction Techniques: A Critical and Systematic Review." International Research Journal of Innovations in Engineering and Technology 09, Special Issue ICCIS (2025): 98–101. https://doi.org/10.47001/irjiet/2025.iccis-202515.
Pełny tekst źródłaWan, Kun Yang. "Research on Urban Water Demand Prediction." Advanced Materials Research 594-597 (November 2012): 2037–40. http://dx.doi.org/10.4028/www.scientific.net/amr.594-597.2037.
Pełny tekst źródłaXue, Xiang Hong, Xiao Feng Xue, and Lei Xu. "Study on Improved PCA-SVM Model for Water Demand Prediction." Advanced Materials Research 591-593 (November 2012): 1320–24. http://dx.doi.org/10.4028/www.scientific.net/amr.591-593.1320.
Pełny tekst źródłaLiu, Hao, Qiyu Wu, Fuzhen Zhuang, Xinjiang Lu, Dejing Dou, and Hui Xiong. "Community-Aware Multi-Task Transportation Demand Prediction." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 1 (2021): 320–27. http://dx.doi.org/10.1609/aaai.v35i1.16107.
Pełny tekst źródłaLestuzzi, Pierino, and Lorenzo Diana. "Accuracy Assessment of Nonlinear Seismic Displacement Demand Predicted by Simplified Methods for the Plateau Range of Design Response Spectra." Advances in Civil Engineering 2019 (September 19, 2019): 1–16. http://dx.doi.org/10.1155/2019/1396019.
Pełny tekst źródłaGeng, Shaoqing, and Hanping Hou. "Demand Stratification and Prediction of Evacuees after Earthquakes." Sustainability 13, no. 16 (2021): 8837. http://dx.doi.org/10.3390/su13168837.
Pełny tekst źródłaJiajing, Jiang, Cui Qingan, and Zhu Aoquan. "Research on Gold Demand Prediciton Based on GM-GPR Model." E3S Web of Conferences 253 (2021): 02014. http://dx.doi.org/10.1051/e3sconf/202125302014.
Pełny tekst źródłaLin, Adrian Xi, Andrew Fu Wah Ho, Kang Hao Cheong, et al. "Leveraging Machine Learning Techniques and Engineering of Multi-Nature Features for National Daily Regional Ambulance Demand Prediction." International Journal of Environmental Research and Public Health 17, no. 11 (2020): 4179. http://dx.doi.org/10.3390/ijerph17114179.
Pełny tekst źródłaDuan, Ganglong, and Jiayi Dong. "Construction of Ensemble Learning Model for Home Appliance Demand Forecasting." Applied Sciences 14, no. 17 (2024): 7658. http://dx.doi.org/10.3390/app14177658.
Pełny tekst źródłaChen, Xinran, Meiting Tu, Dominique Gruyer, and Tongtong Shi. "Predicting Ride-Hailing Demand with Consideration of Social Equity: A Case Study of Chengdu." Sustainability 16, no. 22 (2024): 9772. http://dx.doi.org/10.3390/su16229772.
Pełny tekst źródłaPhithakkitnukooon, Santi, Karn Patanukhom, and Merkebe Getachew Demissie. "Predicting Spatiotemporal Demand of Dockless E-Scooter Sharing Services with a Masked Fully Convolutional Network." ISPRS International Journal of Geo-Information 10, no. 11 (2021): 773. http://dx.doi.org/10.3390/ijgi10110773.
Pełny tekst źródłaYu, Xinlian, Ailun Lan, and Haijun Mao. "Short-Term Demand Prediction for On-Demand Food Delivery with Attention-Based Convolutional LSTM." Systems 11, no. 10 (2023): 485. http://dx.doi.org/10.3390/systems11100485.
Pełny tekst źródłaLiu, Chunjing, Zhen Liu, Jia Yuan, Dong Wang, and Xin Liu. "Urban Water Demand Prediction Based on Attention Mechanism Graph Convolutional Network-Long Short-Term Memory." Water 16, no. 6 (2024): 831. http://dx.doi.org/10.3390/w16060831.
Pełny tekst źródłaMauditia, Lyra, Nurfitri Imro'ah, and Wirda Andani. "Prediksi Jumlah Permintaan Darah UTD PMI Kota Pontianak Menggunakan ARIMA-Kalman Filter." Indonesian Journal of Applied Statistics 7, no. 1 (2024): 73. https://doi.org/10.13057/ijas.v7i1.85958.
Pełny tekst źródłaVAN VAERENBERGH, STEVEN, ALBERTO SALCINES MENEZO, and OSCAR COSIDO COBOS. "DEVELOPMENT OF A SHORT-TERM PREDICTION SYSTEM FOR ELECTRICITY DEMAND." DYNA 96, no. 3 (2021): 285–89. http://dx.doi.org/10.6036/9894.
Pełny tekst źródłaHuang, Wei. "The Demand Prediction of Water Capacity for Drinking Water Plant by Artificial Neural Network." International Journal of Oceanography & Aquaculture 8, no. 2 (2024): 1–6. http://dx.doi.org/10.23880/ijoac-16000315.
Pełny tekst źródłaGupta, Ashish, and Rishabh Mehrotra. "Joint Attention Neural Model for Demand Prediction in Online Marketplaces." Proceedings of the Northern Lights Deep Learning Workshop 1 (February 6, 2020): 6. http://dx.doi.org/10.7557/18.5170.
Pełny tekst źródłaMonteagudo, Francisco Eneldo López, Jorge de la Torre y. Ramos, Leticia del Carmen Ríos Rodríguez, and Leonel Ruvalcaba Arredondo. "Enhancing Electricity Demand Prediction In Mexico: A Comparative Analysis Of Forecasting Models Using Conformal Prediction." Revista de Gestão Social e Ambiental 18, no. 12 (2024): e010644. https://doi.org/10.24857/rgsa.v18n12-235.
Pełny tekst źródłaP, Loganathan. "Cloud based Monitoring and Control Automation of Industrial Demand Prediction System." Journal of Advanced Research in Dynamical and Control Systems 12, SP7 (2020): 1808–16. http://dx.doi.org/10.5373/jardcs/v12sp7/20202293.
Pełny tekst źródłaTakahashi, K., R. Ooka, and S. Ikeda. "Anomaly detection and missing data imputation in building energy data for automated data pre-processing." Journal of Physics: Conference Series 2069, no. 1 (2021): 012144. http://dx.doi.org/10.1088/1742-6596/2069/1/012144.
Pełny tekst źródłaKim, Jin-Young, and Sung-Bae Cho. "Electric Energy Consumption Prediction by Deep Learning with State Explainable Autoencoder." Energies 12, no. 4 (2019): 739. http://dx.doi.org/10.3390/en12040739.
Pełny tekst źródłaBo, Qiuyu, and Wuqun Cheng. "Intelligent Control of Agricultural Irrigation through Water Demand Prediction Based on Artificial Neural Network." Computational Intelligence and Neuroscience 2021 (November 23, 2021): 1–10. http://dx.doi.org/10.1155/2021/7414949.
Pełny tekst źródłaHong, Kairong, Yingying Ren, Fengyuan Li, Wentao Mao, and Xiang Gao. "Robust Interval Prediction of Intermittent Demand for Spare Parts Based on Tensor Optimization." Sensors 23, no. 16 (2023): 7182. http://dx.doi.org/10.3390/s23167182.
Pełny tekst źródłaFaisal, Muhammad, and Ahmad Mutatkin Bakti. "Implementasi Algoritma Monte Carlo Untuk Memprediksi Permintaan Aksesoris Mobil." JURIKOM (Jurnal Riset Komputer) 10, no. 2 (2023): 356. http://dx.doi.org/10.30865/jurikom.v10i2.5907.
Pełny tekst źródłaXu, Xiaomei, Zhirui Ye, Jin Li, and Mingtao Xu. "Understanding the Usage Patterns of Bicycle-Sharing Systems to Predict Users’ Demand: A Case Study in Wenzhou, China." Computational Intelligence and Neuroscience 2018 (September 5, 2018): 1–21. http://dx.doi.org/10.1155/2018/9892134.
Pełny tekst źródłaDuan, Zihe, Yujia Huo, Jiyuan Jiang, Wei Wang, Xiaocheng Ma, and Jianpei Fu. "Optimization and application of the electricity charge trial calculation technology within the intelligent electricity billing management system." International Journal of Low-Carbon Technologies 19 (2024): 2210–17. http://dx.doi.org/10.1093/ijlct/ctae172.
Pełny tekst źródłaLiu, Dongbo, Jian Lu, and Wanjing Ma. "Real-Time Return Demand Prediction Based on Multisource Data of One-Way Carsharing Systems." Journal of Advanced Transportation 2021 (April 26, 2021): 1–14. http://dx.doi.org/10.1155/2021/6654909.
Pełny tekst źródłaDuan, Zhimei, Xiaojin Yuan, and Rongfei Zhu. "Energy big data demand prediction model based on fuzzy rough set." Journal of Intelligent & Fuzzy Systems 39, no. 4 (2020): 5291–300. http://dx.doi.org/10.3233/jifs-189014.
Pełny tekst źródła