Artykuły w czasopismach na temat „Dendritic Scaffolds”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Dendritic Scaffolds”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Wang, Xiuhui, Naoki Kawazoe, and Guoping Chen. "Interaction of Immune Cells and Tumor Cells in Gold Nanorod–Gelatin Composite Porous Scaffolds." Nanomaterials 9, no. 10 (September 24, 2019): 1367. http://dx.doi.org/10.3390/nano9101367.
Pełny tekst źródłaAppelhans, Dietmar, Barbara Klajnert-Maculewicz, Anna Janaszewska, Joanna Lazniewska, and Brigitte Voit. "Dendritic glycopolymers based on dendritic polyamine scaffolds: view on their synthetic approaches, characteristics and potential for biomedical applications." Chemical Society Reviews 44, no. 12 (2015): 3968–96. http://dx.doi.org/10.1039/c4cs00339j.
Pełny tekst źródłaAmir, Roey J., Lorenzo Albertazzi, Jenny Willis, Anzar Khan, Taegon Kang, and Craig J. Hawker. "Multifunctional Trackable Dendritic Scaffolds and Delivery Agents." Angewandte Chemie International Edition 50, no. 15 (March 9, 2011): 3425–29. http://dx.doi.org/10.1002/anie.201007427.
Pełny tekst źródłaAmir, Roey J., Lorenzo Albertazzi, Jenny Willis, Anzar Khan, Taegon Kang, and Craig J. Hawker. "Multifunctional Trackable Dendritic Scaffolds and Delivery Agents." Angewandte Chemie 123, no. 15 (March 9, 2011): 3487–91. http://dx.doi.org/10.1002/ange.201007427.
Pełny tekst źródłaMolina, Noemi, Ana González, Donato Monopoli, Belinda Mentado, José Becerra, Leonor Santos-Ruiz, Yolanda Vida, and Ezequiel Perez-Inestrosa. "Dendritic Scaffold onto Titanium Implants. A Versatile Strategy Increasing Biocompatibility." Polymers 12, no. 4 (April 1, 2020): 770. http://dx.doi.org/10.3390/polym12040770.
Pełny tekst źródłaFernández-Pérez, Julia, Peter W. Madden, Robert Thomas Brady, Peter F. Nowlan, and Mark Ahearne. "The effect of prior long-term recellularization with keratocytes of decellularized porcine corneas implanted in a rabbit anterior lamellar keratoplasty model." PLOS ONE 16, no. 6 (June 1, 2021): e0245406. http://dx.doi.org/10.1371/journal.pone.0245406.
Pełny tekst źródłaLeifer, Cynthia A. "Dendritic cells in host response to biologic scaffolds." Seminars in Immunology 29 (February 2017): 41–48. http://dx.doi.org/10.1016/j.smim.2017.01.001.
Pełny tekst źródłaSadowski, Lukas P., Patricia E. Edem, John F. Valliant, and Alex Adronov. "Synthesis of Polyester Dendritic Scaffolds for Biomedical Applications." Macromolecular Bioscience 16, no. 10 (July 4, 2016): 1475–84. http://dx.doi.org/10.1002/mabi.201600154.
Pełny tekst źródłaPiñón-Zárate, Gabriela, Beatriz Hernández-Téllez, Katia Jarquín-Yáñez, Miguel Ángel Herrera-Enríquez, América Eréndira Fuerte-Pérez, Esther Alejandra Valencia-Escamilla, and Andrés Eliú Castell-Rodríguez. "Gelatin/Hyaluronic Acid Scaffold Coupled to CpG and MAGE-A5 as a Treatment against Murine Melanoma." Polymers 14, no. 21 (October 30, 2022): 4608. http://dx.doi.org/10.3390/polym14214608.
Pełny tekst źródłaSreeperumbuduru, R. S., Z. M. Abid, K. M. Claunch, H. H. Chen, S. M. McGillivray, and E. E. Simanek. "Synthesis and antimicrobial activity of triazine dendrimers with DABCO groups." RSC Advances 6, no. 11 (2016): 8806–10. http://dx.doi.org/10.1039/c5ra10388f.
Pełny tekst źródłaLi, Xiao, Caiping Yan, Dengyuan Wang, Hong Lu, and Zhidao Xia. "Fabrication of Micro-Nano Bioactive Glass Scaffold Incorporated with Siglec-15 for Bone Repair and Postoperative Treatment of Osteosarcoma." Science of Advanced Materials 13, no. 8 (August 1, 2021): 1445–51. http://dx.doi.org/10.1166/sam.2021.4000.
Pełny tekst źródłaKim, Hye Sung, Tzu-Chieh Ho, Moshe J. Willner, Michael W. Becker, Hae-Won Kim, and Kam W. Leong. "Dendritic cell-mimicking scaffolds for ex vivo T cell expansion." Bioactive Materials 21 (March 2023): 241–52. http://dx.doi.org/10.1016/j.bioactmat.2022.08.015.
Pełny tekst źródłaShiao, Tze, Rabindra Rej, Mariécka Rose, Giovanni Pavan, and René Roy. "Synthesis of Dense and Chiral Dendritic Polyols Using Glyconanosynthon Scaffolds." Molecules 21, no. 4 (April 4, 2016): 448. http://dx.doi.org/10.3390/molecules21040448.
Pełny tekst źródłaGarcía Velázquez, Daniel, Rafael Luque, and Ángel Gutiérrez Ravelo. "Microwave-Assisted Synthesis and Properties of Novel Hexaazatrinaphthylene Dendritic Scaffolds." Molecules 25, no. 21 (October 30, 2020): 5038. http://dx.doi.org/10.3390/molecules25215038.
Pełny tekst źródłaSaez, Isabel M., and John W. Goodby. "Segregated liquid crystalline dendritic supermolecules — multipedes based on pentaerythritol scaffolds." J. Mater. Chem. 13, no. 11 (2003): 2727–39. http://dx.doi.org/10.1039/b303654e.
Pełny tekst źródłaDu, Xu-Sheng, Cui-Feng Zhou, and Yiu-Wing Mai. "Facile Synthesis of Hierarchical Polyaniline Nanostructures with Dendritic Nanofibers as Scaffolds." Journal of Physical Chemistry C 112, no. 50 (November 18, 2008): 19836–40. http://dx.doi.org/10.1021/jp8069404.
Pełny tekst źródłaDouloudi, Marilina, Eleni Nikoli, Theodora Katsika, Michalis Vardavoulias, and Michael Arkas. "Dendritic Polymers as Promising Additives for the Manufacturing of Hybrid Organoceramic Nanocomposites with Ameliorated Properties Suitable for an Extensive Diversity of Applications." Nanomaterials 11, no. 1 (December 24, 2020): 19. http://dx.doi.org/10.3390/nano11010019.
Pełny tekst źródłaGovender, Preshendren, Nathan C. Antonels, Johan Mattsson, Anna K. Renfrew, Paul J. Dyson, John R. Moss, Bruno Therrien, and Gregory S. Smith. "Anticancer activity of multinuclear arene ruthenium complexes coordinated to dendritic polypyridyl scaffolds." Journal of Organometallic Chemistry 694, no. 21 (October 2009): 3470–76. http://dx.doi.org/10.1016/j.jorganchem.2009.06.028.
Pełny tekst źródłaChen, Ruying, Hongyan Ma, Lei Zhang, and James D. Bryers. "Precision‐porous templated scaffolds of varying pore size drive dendritic cell activation." Biotechnology and Bioengineering 115, no. 4 (January 22, 2018): 1086–95. http://dx.doi.org/10.1002/bit.26532.
Pełny tekst źródłaKivala, Milan, and François Diederich. "Conjugation and optoelectronic properties of acetylenic scaffolds and charge-transfer chromophores." Pure and Applied Chemistry 80, no. 3 (January 1, 2008): 411–27. http://dx.doi.org/10.1351/pac200880030411.
Pełny tekst źródłaOrbach, Sophia, Michael D. Brooks, Grace G. Bushnell, Max S. Wicha, Jacqueline S. Jeruss, and Lonnie D. Shea. "4026 Dissecting the role of microenvironment heterogeneity on metastatic tumor cell phenotype at an engineered metastatic niche." Journal of Clinical and Translational Science 4, s1 (June 2020): 5–6. http://dx.doi.org/10.1017/cts.2020.62.
Pełny tekst źródłaWigerius, Michael, Dylan Quinn, Antonios Diab, Leanne Clattenburg, Annette Kolar, Jiansong Qi, Stefan R. Krueger, and James P. Fawcett. "The polarity protein Angiomotin p130 controls dendritic spine maturation." Journal of Cell Biology 217, no. 2 (January 9, 2018): 715–30. http://dx.doi.org/10.1083/jcb.201705184.
Pełny tekst źródłaCarlmark, Anna, Eva Malmström, and Michael Malkoch. "Dendritic architectures based on bis-MPA: functional polymeric scaffolds for application-driven research." Chemical Society Reviews 42, no. 13 (2013): 5858. http://dx.doi.org/10.1039/c3cs60101c.
Pełny tekst źródłaFomina, Nadezda, Cathryn L. McFearin, and Adah Almutairi. "Increasing materials' response to two-photon NIR light via self-immolative dendritic scaffolds." Chemical Communications 48, no. 73 (2012): 9138. http://dx.doi.org/10.1039/c2cc00072e.
Pełny tekst źródłaAntonels, Nathan C., John R. Moss, and Gregory S. Smith. "Hydroformylation activity of multinuclear rhodium complexes coordinated to dendritic iminopyridyl and iminophosphine scaffolds." Journal of Organometallic Chemistry 696, no. 10 (May 2011): 2003–7. http://dx.doi.org/10.1016/j.jorganchem.2010.10.048.
Pełny tekst źródłaShirao, Tomoaki, and Yuko Sekino. "Clustering and anchoring mechanisms of molecular constituents of postsynaptic scaffolds in dendritic spines." Neuroscience Research 40, no. 1 (May 2001): 1–7. http://dx.doi.org/10.1016/s0168-0102(01)00209-7.
Pełny tekst źródłaAppelhans, Dietmar, Barbara Klajnert-Maculewicz, Anna Janaszewska, Joanna Lazniewska, and Brigitte Voit. "ChemInform Abstract: Dendritic Glycopolymers Based on Dendritic Polyamine Scaffolds: View on Their Synthetic Approaches, Characteristics and Potential for Biomedical Applications." ChemInform 46, no. 32 (July 24, 2015): no. http://dx.doi.org/10.1002/chin.201532279.
Pełny tekst źródłaRosas-García, Jorge, Lucero A. Ramón-Luing, Karen Bobadilla, Marco Antonio Meraz-Ríos, Edgar E. Sevilla-Reyes, and Teresa Santos-Mendoza. "Distinct Transcriptional Profile of PDZ Genes after Activation of Human Macrophages and Dendritic Cells." International Journal of Molecular Sciences 23, no. 13 (June 24, 2022): 7010. http://dx.doi.org/10.3390/ijms23137010.
Pełny tekst źródłaPinner, Sophie, and Shannon Turley. "Podoplanin-rich stromal networks induce dendritic cell motility via activation of CLEC-2 (102.21)." Journal of Immunology 186, no. 1_Supplement (April 1, 2011): 102.21. http://dx.doi.org/10.4049/jimmunol.186.supp.102.21.
Pełny tekst źródłaSallam, Lamyaa M., Tze Chieh Shiao, Celia Sehad, Abdelkrim Azzouz, and René Roy. "Accelerated Synthesis of Surface Functionalized Mannosylated Dendrimers Built on Cyclotriphosphazene Core." MRS Advances 4, no. 59-60 (2019): 3187–98. http://dx.doi.org/10.1557/adv.2019.375.
Pełny tekst źródłaAldinucci, Alessandra, Antonio Turco, Tiziana Biagioli, Francesca Maria Toma, Daniele Bani, Daniele Guasti, Cinzia Manuelli, et al. "Carbon Nanotube Scaffolds Instruct Human Dendritic Cells: Modulating Immune Responses by Contacts at the Nanoscale." Nano Letters 13, no. 12 (November 15, 2013): 6098–105. http://dx.doi.org/10.1021/nl403396e.
Pełny tekst źródłaNguyen, Thanh Loc, Yue Yin, Youngjin Choi, Ji Hoon Jeong, and Jaeyun Kim. "Enhanced Cancer DNA Vaccine via Direct Transfection to Host Dendritic Cells Recruited in Injectable Scaffolds." ACS Nano 14, no. 9 (August 18, 2020): 11623–36. http://dx.doi.org/10.1021/acsnano.0c04188.
Pełny tekst źródłaPawlica, Dariusz, Marek Marszałek, Grzegorz Mynarczuk, Lesław Sieroń, and Julita Eilmes. "New unsymmetrical Schiff base Ni(ii) complexes as scaffolds for dendritic and amino acid superstructures." New J. Chem. 28, no. 12 (2004): 1615–21. http://dx.doi.org/10.1039/b409298h.
Pełny tekst źródłaYang, Yanzhu, Sanyuan Shi, Qian Ding, Jian Chen, Jinliang Peng, and Yuhong Xu. "Multiwalled carbon nanotube-modified poly(d,l-lactide-co-glycolide) scaffolds for dendritic cell load." Journal of Biomedical Materials Research Part A 103, no. 3 (June 16, 2014): 1045–52. http://dx.doi.org/10.1002/jbm.a.35255.
Pełny tekst źródłaCarlmark, Anna, Eva Malmstroem, and Michael Malkoch. "ChemInform Abstract: Dendritic Architectures Based on Bis-MPA: Functional Polymeric Scaffolds for Application-Driven Research." ChemInform 44, no. 37 (August 22, 2013): no. http://dx.doi.org/10.1002/chin.201337235.
Pełny tekst źródłaOrdanini, Stefania, Giulio Goti, and Anna Bernardi. "From optimized monovalent ligands to size-controlled dendrimers: an efficient strategy towards high-activity DC-SIGN antagonists." Canadian Journal of Chemistry 95, no. 9 (September 2017): 881–90. http://dx.doi.org/10.1139/cjc-2017-0138.
Pełny tekst źródłaMorisaki, Takashi, Takafumi Morisaki, Makoto Kubo, Shinji Morisaki, Yusuke Nakamura, and Hideya Onishi. "Lymph Nodes as Anti-Tumor Immunotherapeutic Tools: Intranodal-Tumor-Specific Antigen-Pulsed Dendritic Cell Vaccine Immunotherapy." Cancers 14, no. 10 (May 15, 2022): 2438. http://dx.doi.org/10.3390/cancers14102438.
Pełny tekst źródłaÖberg, Kim, Jarmo Ropponen, Jonathan Kelly, Peter Löwenhielm, Mattias Berglin, and Michael Malkoch. "Templating Gold Surfaces with Function: A Self-Assembled Dendritic Monolayer Methodology Based on Monodisperse Polyester Scaffolds." Langmuir 29, no. 1 (December 19, 2012): 456–65. http://dx.doi.org/10.1021/la3041314.
Pełny tekst źródłaLaboria, Noemi, Alex Fragoso, Wolfgang Kemmner, Daniel Latta, Olle Nilsson, Mary Luz Botero, Klaus Drese, and Ciara K. O’Sullivan. "Amperometric Immunosensor for Carcinoembryonic Antigen in Colon Cancer Samples Based on Monolayers of Dendritic Bipodal Scaffolds." Analytical Chemistry 82, no. 5 (March 2010): 1712–19. http://dx.doi.org/10.1021/ac902162e.
Pełny tekst źródłaNishimura, Shunichi, Tomoyuki Tajima, Tatsuki Hasegawa, Tomoaki Tanaka, Yutaka Takaguchi, Yuya Oaki, and Hiroaki Imai. "Synthesis of a poly(amidoamine) dendrimer having a 1,10-bis(decyloxy)decane core and its use in fabrication of carbon nanotube/calcium carbonate hybrids through biomimetic mineralization." Canadian Journal of Chemistry 95, no. 9 (September 2017): 935–41. http://dx.doi.org/10.1139/cjc-2017-0022.
Pełny tekst źródłaPinner, Sophie, Diego Mourao-Sa, and Shannon Turley. "Podoplanin interactions with CLEC-2 regulate dendritic cell migration (44.4)." Journal of Immunology 184, no. 1_Supplement (April 1, 2010): 44.4. http://dx.doi.org/10.4049/jimmunol.184.supp.44.4.
Pełny tekst źródłaSi, Youhui, Qiaomu Tian, Fan Zhao, Sean H. Kelly, Lucas S. Shores, Daniel F. Camacho, Anne I. Sperling, Michael S. Andrade, Joel H. Collier, and Anita S. Chong. "Adjuvant-free nanofiber vaccine induces in situ lung dendritic cell activation and TH17 responses." Science Advances 6, no. 32 (August 2020): eaba0995. http://dx.doi.org/10.1126/sciadv.aba0995.
Pełny tekst źródłaDas, Eva C., Sameer Dhawan, Jisha Babu, PR Anil Kumar, Thrikkovil Variathu Kumary, V. Haridas, and Manoj Komath. "Self‐assembling polymeric dendritic peptide as functional osteogenic matrix for periodontal regeneration scaffolds—an in vitro study." Journal of Periodontal Research 54, no. 5 (March 20, 2019): 468–80. http://dx.doi.org/10.1111/jre.12647.
Pełny tekst źródłaHed, Yvonne, Kim Öberg, Sandra Berg, Axel Nordberg, Hans von Holst, and Michael Malkoch. "Multipurpose heterofunctional dendritic scaffolds as crosslinkers towards functional soft hydrogels and implant adhesives in bone fracture applications." Journal of Materials Chemistry B 1, no. 44 (2013): 6015. http://dx.doi.org/10.1039/c3tb21061h.
Pełny tekst źródłaMartín-Rapún, Rafael, Miguel Cano, Mark McKenna, José Luis Serrano, and Mercedes Marcos. "Side-On Nematic Liquid Crystal Dendrimers Based on PAMAM and PPI as Dendritic Scaffolds: Synthesis and Characterization." Macromolecular Chemistry and Physics 216, no. 9 (March 19, 2015): 950–57. http://dx.doi.org/10.1002/macp.201400598.
Pełny tekst źródłaLämmermann, Tim, Jörg Renkawitz, Xunwei Wu, Karin Hirsch, Cord Brakebusch, and Michael Sixt. "Cdc42-dependent leading edge coordination is essential for interstitial dendritic cell migration." Blood 113, no. 23 (June 4, 2009): 5703–10. http://dx.doi.org/10.1182/blood-2008-11-191882.
Pełny tekst źródłaDai, Jingtao, Felix Umrath, Siegmar Reinert, and Dorothea Alexander. "Jaw Periosteal Cells Seeded in Beta-Tricalcium Phosphate Inhibit Dendritic Cell Maturation." Biomolecules 10, no. 6 (June 10, 2020): 887. http://dx.doi.org/10.3390/biom10060887.
Pełny tekst źródłaZhu, Kaiping, Pan Xue, Guanjian Cheng, Menglei Wang, Han Wang, Chao Bao, Kai Zhang, et al. "Thermo-managing and flame-retardant scaffolds suppressing dendritic growth and polysulfide shuttling toward high-safety lithium–sulfur batteries." Energy Storage Materials 43 (December 2021): 130–42. http://dx.doi.org/10.1016/j.ensm.2021.08.031.
Pełny tekst źródłaLei, Chang, Yuxue Cao, Sepanta Hosseinpour, Fang Gao, Jingyu Liu, Jianye Fu, Reuben Staples, Saso Ivanovski, and Chun Xu. "Hierarchical dual-porous hydroxyapatite doped dendritic mesoporous silica nanoparticles based scaffolds promote osteogenesis in vitro and in vivo." Nano Research 14, no. 3 (October 23, 2020): 770–77. http://dx.doi.org/10.1007/s12274-020-3112-2.
Pełny tekst źródłaKirihara, Soshu. "Stereolithographic Additive Manufacturing of Bulky Ceramic Components with Functionally Geometric Micropattern." Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT) 2016, CICMT (May 1, 2016): 000001–5. http://dx.doi.org/10.4071/2016cicmt-ta11.
Pełny tekst źródła