Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Diffusion equations.

Artykuły w czasopismach na temat „Diffusion equations”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Diffusion equations”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Slijepčević, Siniša. "Entropy of scalar reaction-diffusion equations." Mathematica Bohemica 139, no. 4 (2014): 597–605. http://dx.doi.org/10.21136/mb.2014.144137.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Bögelein, Verena, Frank Duzaar, Paolo Marcellini, and Stefano Signoriello. "Nonlocal diffusion equations." Journal of Mathematical Analysis and Applications 432, no. 1 (2015): 398–428. http://dx.doi.org/10.1016/j.jmaa.2015.06.053.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

SOKOLOV, I. M., and A. V. CHECHKIN. "ANOMALOUS DIFFUSION AND GENERALIZED DIFFUSION EQUATIONS." Fluctuation and Noise Letters 05, no. 02 (2005): L275—L282. http://dx.doi.org/10.1142/s0219477505002653.

Pełny tekst źródła
Streszczenie:
Fractional diffusion equations are widely used to describe anomalous diffusion processes where the characteristic displacement scales as a power of time. The forms of such equations might differ with respect to the position of the corresponding fractional operator in addition to or instead of the whole-number derivative in the Fick's equation. For processes lacking simple scaling the corresponding description may be given by distributed-order equations. In the present paper different forms of distributed-order diffusion equations are considered. The properties of their solutions are discussed
Style APA, Harvard, Vancouver, ISO itp.
4

Zubair, Muhammad. "Fractional diffusion equations and anomalous diffusion." Contemporary Physics 59, no. 4 (2018): 406–7. http://dx.doi.org/10.1080/00107514.2018.1515252.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Gurevich, Pavel, and Sergey Tikhomirov. "Systems of reaction-diffusion equations with spatially distributed hysteresis." Mathematica Bohemica 139, no. 2 (2014): 239–57. http://dx.doi.org/10.21136/mb.2014.143852.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Fila, Marek, and Ján Filo. "Global behaviour of solutions to some nonlinear diffusion equations." Czechoslovak Mathematical Journal 40, no. 2 (1990): 226–38. http://dx.doi.org/10.21136/cmj.1990.102377.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

KOLTUNOVA, L. N. "ON AVERAGED DIFFUSION EQUATIONS." Chemical Engineering Communications 114, no. 1 (1992): 1–15. http://dx.doi.org/10.1080/00986449208936013.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Kern, Peter, Svenja Lage, and Mark M. Meerschaert. "Semi-fractional diffusion equations." Fractional Calculus and Applied Analysis 22, no. 2 (2019): 326–57. http://dx.doi.org/10.1515/fca-2019-0021.

Pełny tekst źródła
Streszczenie:
Abstract It is well known that certain fractional diffusion equations can be solved by the densities of stable Lévy motions. In this paper we use the classical semigroup approach for Lévy processes to define semi-fractional derivatives, which allows us to generalize this statement to semistable Lévy processes. A Fourier series approach for the periodic part of the corresponding Lévy exponents enables us to represent semi-fractional derivatives by a Grünwald-Letnikov type formula. We use this formula to calculate semi-fractional derivatives and solutions to semi-fractional diffusion equations n
Style APA, Harvard, Vancouver, ISO itp.
9

Wei, G. W. "Generalized reaction–diffusion equations." Chemical Physics Letters 303, no. 5-6 (1999): 531–36. http://dx.doi.org/10.1016/s0009-2614(99)00270-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Freidlin, Mark. "Coupled Reaction-Diffusion Equations." Annals of Probability 19, no. 1 (1991): 29–57. http://dx.doi.org/10.1214/aop/1176990535.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Krishnan, E. V. "On Some Diffusion Equations." Journal of the Physical Society of Japan 63, no. 2 (1994): 460–65. http://dx.doi.org/10.1143/jpsj.63.460.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Calvo, J., A. Marigonda, and G. Orlandi. "Anisotropic tempered diffusion equations." Nonlinear Analysis 199 (October 2020): 111937. http://dx.doi.org/10.1016/j.na.2020.111937.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Saxena, R. K., A. M. Mathai, and H. J. Haubold. "Fractional Reaction-Diffusion Equations." Astrophysics and Space Science 305, no. 3 (2006): 289–96. http://dx.doi.org/10.1007/s10509-006-9189-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Perumal, Muthiah, and Kittur G. Ranga Raju. "Approximate Convection-Diffusion Equations." Journal of Hydrologic Engineering 4, no. 2 (1999): 160–64. http://dx.doi.org/10.1061/(asce)1084-0699(1999)4:2(160).

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Feo, Filomena, Juan Luis Vázquez, and Bruno Volzone. "Anisotropic fast diffusion equations." Nonlinear Analysis 233 (August 2023): 113298. http://dx.doi.org/10.1016/j.na.2023.113298.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Coville, Jérôme, Changfeng Gui, and Mingfeng Zhao. "Propagation acceleration in reaction diffusion equations with anomalous diffusions." Nonlinearity 34, no. 3 (2021): 1544–76. http://dx.doi.org/10.1088/1361-6544/abe17c.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Karamzin, Y. N., T. A. Kudryashova, and S. V. Polyakov. "On a class of flux schemes for convection-diffusion equations." Computational Mathematics and Information Technologies 2 (2017): 169–79. http://dx.doi.org/10.23947/2587-8999-2017-2-169-179.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Yarmolenko, M. V. "Analytically Solvable Differential Diffusion Equations Describing the Intermediate Phase Growth." METALLOFIZIKA I NOVEISHIE TEKHNOLOGII 40, no. 9 (2018): 1201–7. http://dx.doi.org/10.15407/mfint.40.09.1201.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Truman, A., and H. Z. Zhao. "On stochastic diffusion equations and stochastic Burgers’ equations." Journal of Mathematical Physics 37, no. 1 (1996): 283–307. http://dx.doi.org/10.1063/1.531391.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Gladkov, A. V., V. V. Dmitrieva, and R. A. Sharipov. "Some nonlinear equations reducible to diffusion-type equations." Theoretical and Mathematical Physics 123, no. 1 (2000): 436–45. http://dx.doi.org/10.1007/bf02551049.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Stephenson, John. "Some non-linear diffusion equations and fractal diffusion." Physica A: Statistical Mechanics and its Applications 222, no. 1-4 (1995): 234–47. http://dx.doi.org/10.1016/0378-4371(95)00201-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Tarasov, Vasily E. "Fractional Diffusion Equations for Lattice and Continuum: Grünwald-Letnikov Differences and Derivatives Approach." International Journal of Statistical Mechanics 2014 (December 8, 2014): 1–7. http://dx.doi.org/10.1155/2014/873529.

Pełny tekst źródła
Streszczenie:
Fractional diffusion equations for three-dimensional lattice models based on fractional-order differences of the Grünwald-Letnikov type are suggested. These lattice fractional diffusion equations contain difference operators that describe long-range jumps from one lattice site to another. In continuum limit, the suggested lattice diffusion equations with noninteger order differences give the diffusion equations with the Grünwald-Letnikov fractional derivatives for continuum. We propose a consistent derivation of the fractional diffusion equation with the fractional derivatives of Grünwald-Letn
Style APA, Harvard, Vancouver, ISO itp.
23

Hasal, Pavel, and Vladimír Kudrna. "Certain Problems with the Application of Stochastic Diffusion Processes for the Description of Chemical Engineering Phenomena. Numerical Simulation of One-Dimensional Diffusion Process." Collection of Czechoslovak Chemical Communications 61, no. 4 (1996): 512–35. http://dx.doi.org/10.1135/cccc19960512.

Pełny tekst źródła
Streszczenie:
Some problems are analyzed arising when a numerical simulation of a random motion of a large ensemble of diffusing particles is used to approximate the solution of a one-dimensional diffusion equation. The particle motion is described by means of a stochastic differential equation. The problems emerging especially when the diffusion coefficient is a function of spatial coordinate are discussed. The possibility of simulation of various kinds of stochastic integral is demonstrated. It is shown that the application of standard numerical procedures commonly adopted for ordinary differential equati
Style APA, Harvard, Vancouver, ISO itp.
24

Kordyumov, G. D. "DERIVATIVES IN THE MEAN OF RANDOM PROCESSES AND DIFFUSION MODELS IN ECONOMICS." Bulletin of the South Ural State University series "Mathematics. Mechanics. Physics" 13, no. 3 (2021): 26–30. http://dx.doi.org/10.14529/mmph210303.

Pełny tekst źródła
Streszczenie:
The article is devoted to diffusion models. The authors discuss the theoretical and methodological foundations of diffusion models in financial mathematics. Like the economic system, the modern world is developing rapidly. It seems impossible to predict what will happen tomorrow, how the emergence of new technologies will affect the market, and how changes in random factors will affect the product and the market as a whole. Diffusion models are one of the main methods for studying economic objects and processes. This is why it is so important to develop a diffusion model. The authors propose e
Style APA, Harvard, Vancouver, ISO itp.
25

Aziz, Imran, and Imran Khan. "Numerical Solution of Diffusion and Reaction–Diffusion Partial Integro-Differential Equations." International Journal of Computational Methods 15, no. 06 (2018): 1850047. http://dx.doi.org/10.1142/s0219876218500470.

Pełny tekst źródła
Streszczenie:
In this paper, a collocation method based on Haar wavelet is developed for numerical solution of diffusion and reaction–diffusion partial integro-differential equations. The equations are parabolic partial integro-differential equations and we consider both one-dimensional and two-dimensional cases. Such equations have applications in several practical problems including population dynamics. An important advantage of the proposed method is that it can be applied to both linear as well as nonlinear problems with slide modification. The proposed numerical method is validated by applying it to va
Style APA, Harvard, Vancouver, ISO itp.
26

Carrillo, J. A., M. G. Delgadino, and F. S. Patacchini. "Existence of ground states for aggregation-diffusion equations." Analysis and Applications 17, no. 03 (2019): 393–423. http://dx.doi.org/10.1142/s0219530518500276.

Pełny tekst źródła
Streszczenie:
We analyze free energy functionals for macroscopic models of multi-agent systems interacting via pairwise attractive forces and localized repulsion. The repulsion at the level of the continuous description is modeled by pressure-related terms in the functional making it energetically favorable to spread, while the attraction is modeled through nonlocal forces. We give conditions on general entropies and interaction potentials for which neither ground states nor local minimizers exist. We show that these results are sharp for homogeneous functionals with entropies leading to degenerate diffusio
Style APA, Harvard, Vancouver, ISO itp.
27

Altınbaşak, Sevda Üsküplü. "Highly Oscillatory Diffusion-Type Equations." Journal of Computational Mathematics 31, no. 6 (2013): 549–72. http://dx.doi.org/10.4208/jcm.1307-m3955.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Philibert, Jean. "Adolf Fick and Diffusion Equations." Defect and Diffusion Forum 249 (January 2006): 1–6. http://dx.doi.org/10.4028/www.scientific.net/ddf.249.1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Polyanin, A. D., A. I. Zhurov, and A. V. Vyazmin. "Time-Delayed Reaction-Diffusion Equations." Vestnik Tambovskogo gosudarstvennogo tehnicheskogo universiteta 21, no. 1 (2015): 071–77. http://dx.doi.org/10.17277/vestnik.2015.01.pp.071-077.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

INOUE, Akihiko. "Path integral for diffusion equations." Hokkaido Mathematical Journal 15, no. 1 (1986): 71–99. http://dx.doi.org/10.14492/hokmj/1381518221.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Bakunin, O. G. "Diffusion equations and turbulent transport." Plasma Physics Reports 29, no. 11 (2003): 955–70. http://dx.doi.org/10.1134/1.1625992.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Bocharov, G. A., V. A. Volpert, and A. L. Tasevich. "Reaction–Diffusion Equations in Immunology." Computational Mathematics and Mathematical Physics 58, no. 12 (2018): 1967–76. http://dx.doi.org/10.1134/s0965542518120059.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Paripour, M., E. Babolian, and J. Saeidian. "Analytic solutions to diffusion equations." Mathematical and Computer Modelling 51, no. 5-6 (2010): 649–57. http://dx.doi.org/10.1016/j.mcm.2009.10.043.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Anikin, V. M., Yu A. Barulina, and A. F. Goloubentsev. "Regression equations modelling diffusion processes." Applied Surface Science 215, no. 1-4 (2003): 185–90. http://dx.doi.org/10.1016/s0169-4332(03)00290-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Tasevich, A., G. Bocharov, and V. Wolpert. "Reaction-diffusion equations in immunology." Журнал вычислительной математики и математической физики 58, no. 12 (2018): 2048–59. http://dx.doi.org/10.31857/s004446690003551-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Ninomiya, Hirokazu. "Separatrices of competition-diffusion equations." Journal of Mathematics of Kyoto University 35, no. 3 (1995): 539–67. http://dx.doi.org/10.1215/kjm/1250518709.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Cahn, John W., Shui-Nee Chow, and Erik S. Van Vleck. "Spatially Discrete Nonlinear Diffusion Equations." Rocky Mountain Journal of Mathematics 25, no. 1 (1995): 87–118. http://dx.doi.org/10.1216/rmjm/1181072270.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Schneider, W. R., and W. Wyss. "Fractional diffusion and wave equations." Journal of Mathematical Physics 30, no. 1 (1989): 134–44. http://dx.doi.org/10.1063/1.528578.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Matuszak, Daniel, and Marc D. Donohue. "Inversion of multicomponent diffusion equations." Chemical Engineering Science 60, no. 15 (2005): 4359–67. http://dx.doi.org/10.1016/j.ces.2005.02.071.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Shah, Jayant. "Reaction–Diffusion Equations and Learning." Journal of Visual Communication and Image Representation 13, no. 1-2 (2002): 82–93. http://dx.doi.org/10.1006/jvci.2001.0478.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Constantin, Peter. "Nonlocal nonlinear advection-diffusion equations." Chinese Annals of Mathematics, Series B 38, no. 1 (2017): 281–92. http://dx.doi.org/10.1007/s11401-016-1071-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Li, Chenkuan, Reza Saadati, Safoura Rezaei Aderyani, and Min-Jie Luo. "On the Generalized Fractional Convection–Diffusion Equation with an Initial Condition in Rn." Fractal and Fractional 9, no. 6 (2025): 347. https://doi.org/10.3390/fractalfract9060347.

Pełny tekst źródła
Streszczenie:
Time-fractional convection–diffusion equations are significant for their ability to model complex transport phenomena that deviate from classical behavior, with numerous applications in anomalous diffusion, memory effects, and nonlocality. This paper derives, for the first time, a unique series solution to a multiple time-fractional convection–diffusion equation with a non-homogenous source term, based on an inverse operator, a newly-constructed space, and the multivariate Mittag–Leffler function. Several illustrative examples are provided to show the power and simplicity of our main theorems
Style APA, Harvard, Vancouver, ISO itp.
43

Malinowski, Marek T. "Bipartite Fuzzy Stochastic Differential Equations with Global Lipschitz Condition." Mathematical Problems in Engineering 2016 (2016): 1–13. http://dx.doi.org/10.1155/2016/3830529.

Pełny tekst źródła
Streszczenie:
We introduce and analyze a new type of fuzzy stochastic differential equations. We consider equations with drift and diffusion terms occurring at both sides of equations. Therefore we call them the bipartite fuzzy stochastic differential equations. Under the Lipschitz and boundedness conditions imposed on drifts and diffusions coefficients we prove existence of a unique solution. Then, insensitivity of the solution under small changes of data of equation is examined. Finally, we mention that all results can be repeated for solutions to bipartite set-valued stochastic differential equations.
Style APA, Harvard, Vancouver, ISO itp.
44

Gautam, Pushpa Nidhi, Buddhi Prasad Sapkota, and Kedar Nath Uprety. "A brief review on the solutions of advection-diffusion equation." Scientific World 15, no. 15 (2022): 4–9. http://dx.doi.org/10.3126/sw.v15i15.45668.

Pełny tekst źródła
Streszczenie:
In this work both linear and nonlinear advection-diffusion equations are considered and discussed their analytical solutions with different initial and boundary conditions. The work of Ogata and Banks, Harleman and Rumer, Cleary and Adrian, Atul Kumar et al., Mojtabi and Deville are reviewed for linear advection-diffusion equations and for nonlinear, we have chosen the work of Sakai and Kimura. Some enthusiastic functions used in the articles, drawbacks and applications of the results are discussed. Reduction of the advection-diffusion equations into diffusion equations make the governing equa
Style APA, Harvard, Vancouver, ISO itp.
45

Bertrand, Nicolas, Jocelyn Sabatier, Olivier Briat, and Jean-Michel Vinassa. "An Implementation Solution for Fractional Partial Differential Equations." Mathematical Problems in Engineering 2013 (2013): 1–7. http://dx.doi.org/10.1155/2013/795651.

Pełny tekst źródła
Streszczenie:
The link between fractional differentiation and diffusion equation is used in this paper to propose a solution for the implementation of fractional diffusion equations. These equations permit us to take into account species anomalous diffusion at electrochemical interfaces, thus permitting an accurate modeling of batteries, ultracapacitors, and fuel cells. However, fractional diffusion equations are not addressed in most commercial software dedicated to partial differential equations simulation. The proposed solution is evaluated in an example.
Style APA, Harvard, Vancouver, ISO itp.
46

Gomez, Francisco, Victor Morales, and Marco Taneco. "Analytical solution of the time fractional diffusion equation and fractional convection-diffusion equation." Revista Mexicana de Física 65, no. 1 (2018): 82. http://dx.doi.org/10.31349/revmexfis.65.82.

Pełny tekst źródła
Streszczenie:
In this paper, we obtain analytical solutions for the time-fractional diffusion and time-fractional convection-diffusion equations. These equations are obtained from the standard equations by replacing the time derivative with a fractional derivative of order $\alpha$. Fractional operators of type Liouville-Caputo, Atangana-Baleanu-Caputo, fractional conformable derivative in Liouville-Caputo sense and Atangana-Koca-Caputo were used to model diffusion and convection-diffusion equation. The Laplace and Fourier transforms were applied to obtain the analytical solutions for the fractional order d
Style APA, Harvard, Vancouver, ISO itp.
47

Goto, Shin-itiro, and Hideitsu Hino. "Diffusion equations from master equations—A discrete geometric approach." Journal of Mathematical Physics 61, no. 11 (2020): 113301. http://dx.doi.org/10.1063/5.0003656.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Othmer, Hans G., and Thomas Hillen. "The Diffusion Limit of Transport Equations II: Chemotaxis Equations." SIAM Journal on Applied Mathematics 62, no. 4 (2002): 1222–50. http://dx.doi.org/10.1137/s0036139900382772.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Xie, Longjie, and Li Yang. "Diffusion approximation for multi-scale stochastic reaction-diffusion equations." Journal of Differential Equations 300 (November 2021): 155–84. http://dx.doi.org/10.1016/j.jde.2021.07.039.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Philip, J. R. "Some exact solutions of convection-diffusion and diffusion equations." Water Resources Research 30, no. 12 (1994): 3545–51. http://dx.doi.org/10.1029/94wr01329.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!