Artykuły w czasopismach na temat „Discharges in liquids”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Discharges in liquids”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Wesołowski, Marcin, Sylwester Tabor, Paweł Kiełbasa, and Sławomir Kurpaska. "Electromagnetic and Thermal Phenomena Modeling of Electrical Discharges in Liquids." Applied Sciences 10, no. 11 (2020): 3900. http://dx.doi.org/10.3390/app10113900.
Pełny tekst źródłaSchmidt, Michael, Veronika Hahn, Beke Altrock, et al. "Plasma-Activation of Larger Liquid Volumes by an Inductively-Limited Discharge for Antimicrobial Purposes." Applied Sciences 9, no. 10 (2019): 2150. http://dx.doi.org/10.3390/app9102150.
Pełny tekst źródłaLebedev, Yuri A. "Microwave Discharges in Liquid Hydrocarbons: Physical and Chemical Characterization." Polymers 13, no. 11 (2021): 1678. http://dx.doi.org/10.3390/polym13111678.
Pełny tekst źródłaKovačević, Vesna V., Goran B. Sretenović, Bratislav M. Obradović, and Milorad M. Kuraica. "Low-temperature plasmas in contact with liquids—a review of recent progress and challenges." Journal of Physics D: Applied Physics 55, no. 47 (2022): 473002. http://dx.doi.org/10.1088/1361-6463/ac8a56.
Pełny tekst źródłaLu, Xu, Sen Wang, Renwu Zhou, Zhi Fang, and P. J. Cullen. "Discharge modes and liquid interactions for plasma-bubble discharges." Journal of Applied Physics 132, no. 7 (2022): 073303. http://dx.doi.org/10.1063/5.0094560.
Pełny tekst źródłaKondrat, Oleksandr, and Taras Shumilin. "Electrohydraulic Yutkin effect and electrospark discharges in liquids." Prospecting and Development of Oil and Gas Fields, no. 3 (June 29, 2023): 61–67. http://dx.doi.org/10.69628/pdogf/3.2023.61.
Pełny tekst źródłaMilardovich, N., M. Ferreyra, J. C. Chamorro, and L. Prevosto. "DISCHARGES IN CONTACT WITH LIQUIDS: ELECTRICAL CHARACTERIZATION OFA PULSED CORONA DISCHARGE." Anales AFA 33, Fluidos (2022): 6–10. http://dx.doi.org/10.31527/analesafa.2021.33.fluidos.6.
Pełny tekst źródłaMilardovich, N., M. Ferreyra, J. C. Chamorro, and L. Prevosto. "DISCHARGES IN CONTACT WITH LIQUIDS: ELECTRICAL CHARACTERIZATION OF A PULSED CORONA DISCHARGE." Anales AFA 33, Special (2022): 6–10. https://doi.org/10.31527/analesafa.2022.fluidos.6.
Pełny tekst źródłaNomine, A. V., Thomas Gries, Cédric Noël, et al. "(Invited) Mixing Elements in 2D Nanostructures Grown by Discharges in Liquids." ECS Meeting Abstracts MA2024-01, no. 24 (2024): 1409. http://dx.doi.org/10.1149/ma2024-01241409mtgabs.
Pełny tekst źródłaKorobeynikov, S. M., A. G. Ovsyannikov, A. V. Ridel, et al. "Study of partial discharges in liquids." Journal of Electrostatics 103 (January 2020): 103412. http://dx.doi.org/10.1016/j.elstat.2019.103412.
Pełny tekst źródłaThagard, Selma Mededovic, Kazunori Takashima, and Akira Mizuno. "Electrical Discharges in Polar Organic Liquids." Plasma Processes and Polymers 6, no. 11 (2009): 741–50. http://dx.doi.org/10.1002/ppap.200900017.
Pełny tekst źródłaBabula, E., A. Sierota, S. Zoledziowski, and J. H. Calderwood. "Surface Partial Discharges in Moist Dielectric Liquids." IEEE Transactions on Electrical Insulation EI-20, no. 2 (1985): 299–302. http://dx.doi.org/10.1109/tei.1985.348834.
Pełny tekst źródłaLebedev, Yu A. "Microwave Discharges in Liquids: Fields of Applications." High Temperature 56, no. 5 (2018): 811–20. http://dx.doi.org/10.1134/s0018151x18050280.
Pełny tekst źródłaHerchl, F., K. Marton, L. Tomčo, et al. "Breakdown and partial discharges in magnetic liquids." Journal of Physics: Condensed Matter 20, no. 20 (2008): 204110. http://dx.doi.org/10.1088/0953-8984/20/20/204110.
Pełny tekst źródłaAkiyama, H. "Streamer discharges in liquids and their applications." IEEE Transactions on Dielectrics and Electrical Insulation 7, no. 5 (2000): 646–53. http://dx.doi.org/10.1109/94.879360.
Pełny tekst źródłaHamdan, Ahmad. "(Invited) Nanosecond Electrical Discharges in Liquids: Applications in the Synthesis of Nanoparticles, Including Nanoalloys." ECS Meeting Abstracts MA2024-01, no. 24 (2024): 1398. http://dx.doi.org/10.1149/ma2024-01241398mtgabs.
Pełny tekst źródłaGamaleev, Vladislav, Naoyuki Iwata, Masaru Hori, Mineo Hiramatsu, and Masafumi Ito. "Direct Treatment of Liquids Using Low-Current Arc in Ambient Air for Biomedical Applications." Applied Sciences 9, no. 17 (2019): 3505. http://dx.doi.org/10.3390/app9173505.
Pełny tekst źródłaKozioł, Michał. "Energy Distribution of Optical Radiation Emitted by Electrical Discharges in Insulating Liquids." Energies 13, no. 9 (2020): 2172. http://dx.doi.org/10.3390/en13092172.
Pełny tekst źródłaSun, Anbang, Chao Huo, and Jie Zhuang. "Formation mechanism of streamer discharges in liquids: a review." High Voltage 1, no. 2 (2016): 74–80. http://dx.doi.org/10.1049/hve.2016.0016.
Pełny tekst źródłaGaysin, A. F., F. M. Gaysin, L. N. Bagautdinova, A. A. Khafizov, R. I. Valiev, and E. V. Gazeeva. "Plasma-electrolyte discharges in a gas-liquid medium for the production of hydrogen." Power engineering: research, equipment, technology 23, no. 2 (2021): 27–35. http://dx.doi.org/10.30724/1998-9903-2021-23-2-27-35.
Pełny tekst źródłaKorzec, Dariusz, Florian Hoppenthaler, and Stefan Nettesheim. "Piezoelectric Direct Discharge: Devices and Applications." Plasma 4, no. 1 (2020): 1–41. http://dx.doi.org/10.3390/plasma4010001.
Pełny tekst źródłaHamdan, Ahmad, and Luc Stafford. "A Versatile Route for Synthesis of Metal Nanoalloys by Discharges at the Interface of Two Immiscible Liquids." Nanomaterials 12, no. 20 (2022): 3603. http://dx.doi.org/10.3390/nano12203603.
Pełny tekst źródłaTsoukou, Evanthia, Maxime Delit, Louise Treint, Paula Bourke, and Daniela Boehm. "Distinct Chemistries Define the Diverse Biological Effects of Plasma Activated Water Generated with Spark and Glow Plasma Discharges." Applied Sciences 11, no. 3 (2021): 1178. http://dx.doi.org/10.3390/app11031178.
Pełny tekst źródłaNominé, A. V., N. Tarasenka, A. Nevar, et al. "Alloying nanoparticles by discharges in liquids: a quest for metastability." Plasma Physics and Controlled Fusion 64, no. 1 (2021): 014003. http://dx.doi.org/10.1088/1361-6587/ac35f0.
Pełny tekst źródłaNominé, A. V., Th Gries, C. Noel, A. Nominé, V. Milichko, and T. Belmonte. "Synthesis of nanomaterials by electrode erosion using discharges in liquids." Journal of Applied Physics 130, no. 15 (2021): 151101. http://dx.doi.org/10.1063/5.0040587.
Pełny tekst źródłaHimura, H., A. Irie, and S. Masamune. "Plasma Irradiation to Ionic Liquids using 2.45 GHz Microwave Discharges." Transactions of the Materials Research Society of Japan 36, no. 1 (2011): 59–63. http://dx.doi.org/10.14723/tmrsj.36.59.
Pełny tekst źródłaAuge, J. L., O. Lesaint, and A. T. Vu Thi. "Partial discharges in ceramic substrates embedded in liquids and gels." IEEE Transactions on Dielectrics and Electrical Insulation 20, no. 1 (2013): 262–74. http://dx.doi.org/10.1109/tdei.2013.6451366.
Pełny tekst źródłaThulin, Anders, Anders Molander, and Ulrich von Pidoll. "Electrostatic Discharges of Droplets of Various Liquids during Splash Filling." Chemical Engineering & Technology 39, no. 10 (2016): 1972–75. http://dx.doi.org/10.1002/ceat.201500687.
Pełny tekst źródłaFerreyra, M., B. Fina, N. Milardovich, J. C. Chamorro, B. Santamaría, and L. Prevosto. "WATER TREATMENT WITH A PULSED CORONA DISCHARGE." Anales AFA 33, Special Fluids (2022): 11–15. http://dx.doi.org/10.31527/analesafa.2022.fluidos.11.
Pełny tekst źródłaStuchala, Filip, and Pawel Rozga. "Comprehensive Comparison of Lightning Properties of Insulating Liquids in Relation to Mineral Oil Under Positive Lightning Impulse." Energies 18, no. 9 (2025): 2381. https://doi.org/10.3390/en18092381.
Pełny tekst źródłaTONG, Lizhu. "S0550402 Numerical Analysis of Electrohydrodynamics due to Electrical Discharges in Liquids." Proceedings of Mechanical Engineering Congress, Japan 2014 (2014): _S0550402——_S0550402—. http://dx.doi.org/10.1299/jsmemecj.2014._s0550402-.
Pełny tekst źródłaGidalevich, E., R. L. Boxman, and S. Goldsmith. "Hydrodynamic effects in liquids subjected to pulsed low current arc discharges." Journal of Physics D: Applied Physics 37, no. 10 (2004): 1509–14. http://dx.doi.org/10.1088/0022-3727/37/10/014.
Pełny tekst źródłaHamdan, Ahmad, Cédric Noël, Jaafar Ghanbaja, and Thierry Belmonte. "Comparison of Aluminium Nanostructures Created by Discharges in Various Dielectric Liquids." Plasma Chemistry and Plasma Processing 34, no. 5 (2014): 1101–14. http://dx.doi.org/10.1007/s11090-014-9564-y.
Pełny tekst źródłaKawamura, Tomohisa, Moriyuki Kanno, Sven Stauss, et al. "Generation and characterization of field-emitting surface dielectric barrier discharges in liquids." Journal of Applied Physics 123, no. 4 (2018): 043301. http://dx.doi.org/10.1063/1.5011445.
Pełny tekst źródłaNominé, A. V., M. Nazarov, T. Gries, et al. "Synthesis and growth mechanism of Bi2O2CO3 nanosheets by pulsed discharges in liquids." Applied Surface Science 674 (November 2024): 160844. http://dx.doi.org/10.1016/j.apsusc.2024.160844.
Pełny tekst źródłaPogoda, Alexander, Yuanyuan Pan, Monika Röntgen, and Sybille Hasse. "Plasma-Functionalized Liquids for Decontamination of Viable Tissues: A Comparative Approach." International Journal of Molecular Sciences 25, no. 19 (2024): 10791. http://dx.doi.org/10.3390/ijms251910791.
Pełny tekst źródłaDekhtyar, V. A., and A. E. Dubinov. "Visualization of Liquids Flows in Microfluidics and Plasma Channels in Nanosecond Spark Microdischarges by Means of Digital Microscopy." Scientific Visualization 15, no. 1 (2023): 1–16. http://dx.doi.org/10.26583/sv.15.1.01.
Pełny tekst źródłaPeta, Katarzyna. "Multiscale Wettability of Microtextured Irregular Surfaces." Materials 17, no. 23 (2024): 5716. http://dx.doi.org/10.3390/ma17235716.
Pełny tekst źródłaDanikas, M. G. "Breakdown in Nanofluids: A Short Review on Experimental Results and Related Mechanisms." Engineering, Technology & Applied Science Research 6, no. 5 (2018): 3300–3309. https://doi.org/10.5281/zenodo.1490300.
Pełny tekst źródłaSchaper, L., W. G. Graham, and K. R. Stalder. "Vapour layer formation by electrical discharges through electrically conducting liquids—modelling and experiment." Plasma Sources Science and Technology 20, no. 3 (2011): 034003. http://dx.doi.org/10.1088/0963-0252/20/3/034003.
Pełny tekst źródłaBezborodko, P., O. Lesaint, and R. Tobazeon. "Study of partial discharges and gassing phenomena within gaseous cavities in insulating liquids." IEEE Transactions on Electrical Insulation 27, no. 2 (1992): 287–97. http://dx.doi.org/10.1109/14.135600.
Pełny tekst źródłaBelmonte, T., A. Hamdan, F. Kosior, C. Noël, and G. Henrion. "Interaction of discharges with electrode surfaces in dielectric liquids: application to nanoparticle synthesis." Journal of Physics D: Applied Physics 47, no. 22 (2014): 224016. http://dx.doi.org/10.1088/0022-3727/47/22/224016.
Pełny tekst źródłaSanz, J., C. J. Renedo, A. Ortiz, P. J. Quintanilla, F. Ortiz, and D. F. García. "A Brief Review of the Impregnation Process with Dielectric Fluids of Cellulosic Materials Used in Electric Power Transformers." Energies 16, no. 9 (2023): 3673. http://dx.doi.org/10.3390/en16093673.
Pełny tekst źródłaSvarnas, Panagiotis, Michael Poupouzas, Konstantia Papalexopoulou, et al. "Water Modification by Cold Plasma Jet with Respect to Physical and Chemical Properties." Applied Sciences 12, no. 23 (2022): 11950. http://dx.doi.org/10.3390/app122311950.
Pełny tekst źródłaLoiselle, Luc, U. Mohan Rao, and Issouf Fofana. "Gassing Tendency of Fresh and Aged Mineral Oil and Ester Fluids under Electrical and Thermal Fault Conditions." Energies 13, no. 13 (2020): 3472. http://dx.doi.org/10.3390/en13133472.
Pełny tekst źródłaCorbella Roca, Carles, Sabine Portal, Madhusudhan Kundrapu, and Michael Keidar. "(Invited) Advances in Synthesis of Nanomaterials By Atmospheric Arc Discharge with Pulsed Power." ECS Meeting Abstracts MA2022-02, no. 19 (2022): 888. http://dx.doi.org/10.1149/ma2022-0219888mtgabs.
Pełny tekst źródłaTaubkin, Igor’ S. "Overview of Static Electricity in Some Industrial Operations with Petroleum Products." Theory and Practice of Forensic Science 13, no. 2 (2018): 54–64. http://dx.doi.org/10.30764/1819-2785-2018-13-2-54-64.
Pełny tekst źródłaEfremov, N. M., B. Yu Adamiak, V. I. Blochin, et al. "Experimental investigation of the action of pulsed electrical discharges in liquids on biological objects." IEEE Transactions on Plasma Science 28, no. 1 (2000): 224–29. http://dx.doi.org/10.1109/27.842908.
Pełny tekst źródłaJimenez, Francisco J., Marjan Radfar, Braedan Kirk, Richard D. Sydora, and Trent S. Hunter. "Shock waves in pulsed electrical discharges in liquids: numerical simulation and comparison to experiment." Journal of Physics D: Applied Physics 54, no. 7 (2020): 075202. http://dx.doi.org/10.1088/1361-6463/abc3ea.
Pełny tekst źródłaKawai, Jun, Seema Jagota, Takeo Kaneko, et al. "Self-assembly of tholins in environments simulating Titan liquidospheres: implications for formation of primitive coacervates on Titan." International Journal of Astrobiology 12, no. 4 (2013): 282–91. http://dx.doi.org/10.1017/s1473550413000116.
Pełny tekst źródła